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Abstract. We apply gradient dynamics to population games in which con-
sumers interact via rank dependent preferences. Rank dependent consumption
leads to a payoff landscape that changes shape in response to the nonlinearity
inherent in non-price interactions. The nonlinearity causes the spontaneous
formation of moving accreting clusters in action space. We study the struc-
ture and development of these clusters in deterministic models and also in the
presence of stochastic uncertainty about the shape of the local landscape. The
full model thus combines linear diffusion with nonlinear non-price signaling.
Similar linear diffusion has been described in natural resource pricing, and
analogous nonlinear saturation due to externalities has been used to study
market penetration of pharmaceuticals and other products. It appears possi-
ble to extend the same ideas to Þnancial markets. We discuss extensions that
may shed light on the dynamics of asset price bubbles.

KEYWORDS: Gradient dynamics, non-price signaling, Brownian noise, pop-
ulation games, payoff landscapes, rank dependent preferences, herding.

�Since consumption of these more excellent goods is an evidence of wealth, it becomes
honoriÞc; and conversely, the failure to consume in due quantity and quality becomes a
mark of inferiority and demerit.� �Thorstein Veblen (1899, p.64)

1. Introduction

Economic theory relies on the price mediated effects of independent individual
decisions. Nevertheless, in crucial periods markets often appear to be driven by
non-price interactions: bandwagon behavior, herding, and other collective behaviors
that manifest interdependence.1 Consumption decisions are particularly susceptible

Date : August 15, 2000. We thank Lones Smith and Ronald Grieson for helpful comments.
1Herding and other mimetic market behaviors have been studied extensively, see, e.g.,

Bikhchandani et al (1992), Lee (1998), Bannerjee (1992), Topol(1991), Trueman(1994). This
previous work falls roughly into two classes, one based on the ßow of information to actors with
rational expectations, e.g. Avery and Zemsky (1998), the other on mimetic behavior following
from mechanical rules, e.g. Kirman (1993). Considered as a description of certain types of herd-
ing, our models are rule based. However, we depart from the literature in several respects. We
introduce nonlinear self-consistency conditions that determine decision probabilities endogenously,
rather than externally Þxing all model parameters. Furthermore, our system states are deÞned
by entire probability distributions on a metric that measures allocation of expenditures to rank
dependent and ordinary consumption types. This results in models that are in some respects
broader and in some respects narrower than previously considered. In particular, our dynamics
are Markovian so only current information about decisions affects next-instant decisions. In con-
trast to Avery and Zemsky (1998), we do not consider an entire decisionmaking history. On the
other hand, our Markovian dynamics operates on a multiply inÞnite functional state space, rather
than on a Þnite state system (as in Kirman (1993)), so that we are able to study non-equilibrium
distributive behavior.
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to linkage of this sort when they ßow from the desire for rank and status.2 Rank
dependent consumption by deÞnition achieves the desired effect only to the extent
that it equals or exceeds the consumption of others. Thus, the creation of non-
pecuniary negative externalities with dynamic consequences not yet understood.
We take the view here that rank dependent decisions create a promising test bed

for dynamic modelling in which agents react to cues other than price. We assume
dynamics that operate on a continuum of consumers, each of whom chooses from
a continuous action set mapped to [0, 1]. An action choice speciÞes the fraction of
income devoted to rank dependent consumption. Each action yields a payoff that
depends on the current distribution of actions across the population. Consumers
adjust their choices continuously so as to move uphill in a payoff �landscape.�
These individual adjustments change the action distribution and in turn modify
the landscape. The interplay of population distribution and landscape characterize
an inherent nonlinearity in the dynamics. The full consequences of the nonlinearity
emerge when agents are uncertain about the shape of the local topography, and
there is a random element in individual adjustments. In its complete form, the
model combines linear diffusion and nonlinear saturation effects. Similar linear
dynamic diffusion has been described in natural resource pricing,3 and phenom-
enological models based on logistic saturation have separately been used to study
market saturation of pharmaceuticals and other products.4

We examine two rules for rank dependent preferences that produce two distinct
dynamic patterns. Under the Þrst rule, individuals are rewarded proportionately
as they narrow the gap between their consumption and higher consumption levels
of others. The result is a consumption pattern that converges to a homogeneous,
single-group equilibrium in which there is a Þxed proportion of rank dependent
and ordinary consumption. Starting from an initially dispersed behavior pattern,
moving subgroups of agents emerge and snowball, continuously attracting more
population. Accreting subgroups appear to be a deÞning feature of an inÞnite
class of models with non-price interdependence. The second rule proportionately
rewards consumption in excess of others� consumption. This leads to the emer-
gence of a speciÞc dispersed consumption pattern, even when the initial pattern
is homogeneous. In the ultimate equilibrium, a large subgroup of the population

2Notions of conspicuous consumption and pecuniary taste, commonly attributed to Thorstein
Veblen but anticipated in important ways by John Rea (1834) and others, continue to echo in
the modern literature. Robert Frank (1985, p.7) has called attention to the class of �goods that
are sought after less because of any absolute property they possess than because they compare
favorably to others in their class.� See also Loch et al (1999), J. Duesenberry (1949), F. Hirsch
(1976).

3Dixit and Pindyck (1994, pp.150ff, 404 ff) describe a mean reverting, stochastic process for the
value of a developed oil reserve. The dynamics are based on a risk neutral portfolio incorporating
a long position in the option to invest in exploration and a short position in the underlying asset.
The two competing effects result in an equilibrium state governed by a conßuent hypergeometric
function. Below in Section 6, we formulate dynamic equations describing the interplay between
stochastic uncertainty about the local shape of the payoff landscape and the payoff to ordinary
consumption. The linear part of the equilibrium of this system is also described by a conßuent
hypergeometric function. The dynamics of the linear part of our model and of the resource pricing
example considered by Dixit and Pindyck are solvable in terms of similar Green�s functions. We
conjecture, but have not been able to prove, that the linear part of our model can be expressed as
a mean reverting process, as in the resource pricing example. The open question is whether the
conßuent singularity structure is generic to an interesting class of stochastic economic models.

4See Berndt, Pindyck, and Azoulay (1999, 2000) and references cited there.
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exhibits a preference pattern dominated by rank dependent consumption, while a
small subgroup exhibits a preference for ordinary consumption.
The discussion is organized as follows. Section 2 speciÞes the payoff functions

following from the two different consumer preference rules. Section 3 derives dy-
namic equations that describe the evolution of the population distribution under
the two preference rules. Section 4 gives analytic results for steady state con-
sumption patterns and exhibits general dynamical solutions. Section 5 describes
markers for population clusters in the form of shock waves in action space. Section
6 describes the asymptotic dynamic equilibria that emerge when Þxed proportions
of the population follow the two preference rules simultaneously and there is un-
certainty regarding the shape of the local topography. Section 7 summarizes the
work, describes the larger universe of models of this general type, and suggests
possibilities for extensions. An appendix details proofs and derivations.

2. The Preference Landscape

We consider a population in which at each instant of time, t, individuals choose
an action x from the interval [0, 1]. We interpret an action as an allocation of
income in which a fraction x is allocated to ordinary consumption and a fraction
1 − x is allocated to rank dependent consumption. Individuals are distinguished
only by their action choice. Here, income is an endowment with unit ßow rate and
is instantaneously consumed.
In this context, we introduce a payoff (or overall utility) function φ in the form of

two additive components. The Þrst is a utility u(x) of ordinary consumption of food
and other necessities. The second is a utility U of rank dependent consumption.
The utility U has a functional dependence on the distribution of agents� current
action choices D(x, t). We assume a sufficiently large population that the set of
individuals forms a continuum, so that D(x, t) is piecewise continuous in x. Thus,
there is a tradeoff between rank dependent and ordinary consumption,5 and each
consumer has a payoff of the separable form

(1) φ = U + cu,

where c ≥ 0 is the constant marginal rate of substitution. The preference landscape
is not Þxed. Because the payoff for rank dependent consumption depends on the
distribution D(x, t), the dynamical equations described below in Sections 3 and 6
ultimately determine the shape of the preference landscape.

2.0.1. Ordinary consumption. We assume that an individual receives direct utility
cu = c lnx from ordinary consumption x. For c > 0 the unbounded growth of
marginal utility ∂u/∂x as x→ 0 insures that ordinary consumption is a necessity.
The dynamics of the model do not depend on the speciÞc choice u = lnx. The
same qualitative results follow from any (concave) utility function in the family
cxk, 0 < k < 1, with diminishing marginal utility and inÞnite marginal utility at
x = 0. To highlight our results on emergent homogeneity and heterogeneity, we
shall assume that every consumer has the same tradeoff parameter c, and the same
Þxed overall income, normalized to 1. Hence a consumer with ordinary consumption
level x in [0, 1] devotes 1− x to rank dependent consumption.

5We do not consider the choice of particular items within either the rank dependent or ordinary
consumption bundle. Presumably, expenditures are allocated efficiently within each bundle, so it
suffices to model expenditure shares across the two bundles.
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2.1. Emulation. We consider two different reward patterns for rank dependent
consumption. Under the Emulation reward pattern, an individual receives disutility
to the degree that his or her rank dependent consumption is exceeded by the rank
dependent consumption of others. Thus an individual choosing the fraction of rank
dependent consumption 1−x, when all others choose 1−y in [0, 1], receives disutility
proportional to the amount by which 1− y exceeds 1− x, viz.

(2) rE(x, y) = min{0, (1− x)− (1− y)} = min{0, y − x}.
If others� choices of ordinary consumption y are distributed according to the cumu-
lative distribution function D(y), then from (2) the payoff is

(3) UE(x,D) =

Z 1

0

rE(x, y)dD(y) =

Z x

0

(y − x)dD(y).

Integrating by parts, we can write (3) as

(4) UE(x,D) = −
Z x

0

D(y)dy.

Thus, given the population distribution of consumption D, an individual choosing
ordinary consumption level x receives total payoff

(5) φE(x,D) = c lnx−
Z x

0

D(y)dy.

The smaller the ordinary consumption x of a given consumer, holding the con-
sumption of all other consumers Þxed, the lower the return from ordinary con-
sumption represented by c lnx, and the higher the return from rank dependent
consumption represented by − R x

0
D(y)dy. For sufficiently small x relative to the

ordinary consumption of others,
R x
0
D(y)dy = 0, which is the maximum possible

return to rank dependent consumption under Emulation. Furthermore, becauseR x
0
D(y)dy ≤ 1, whereas u = lnx is unbounded below as x approaches zero, no

individual completely neglects ordinary consumption except in the limiting case
c = 0.6

2.2. Excess. An alternative assumption is that an individual receives additional
utility (�Excess�) based on how much his or her rank dependent consumption ex-
ceeds the rank dependent consumption of others. Suppose a particular individual
chooses rank dependent consumption 1−x when all others choose 1−y. Under the
Excess regime, this individual receives

(6) rX(x, y) = max{0, (1− x)− (1− y)} = max{0, y − x}.
If others� ordinary consumption choices y are distributed according to the cumula-
tive distribution function D(y), then from (6) the corresponding total payoff is

(7) UX =

Z 1

0

rx(x, y)dD(y) =

Z 1

x

(y − x)dD(y).

6The case c ≥ 1 is uninteresting because it implies that the rank dependent term is dominated
by the ordinary consumption term in (5), and increasing ordinary consumption always increases
the payoff.
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Integrating by parts, we can rewrite (7) as

(8) UX = hxi−
Z x

0

[1−D(y)]dy,

where hxi is the population-mean choice

hxi =
Z 1

0

xdD(x) =

Z 1

0

[1−D(x)] dx.

Thus the individual�s overall payoff in the Excess version of rank dependent con-
sumption is

(9) φX(x,D) = c lnx+ hxi−
Z x

0

[1−D(y)]dy.

Under the Excess rules, as under Emulation, no one completely neglects ordinary
consumption except in the limiting case c = 0. Note that the gradient of the Excess
payoff is precisely the Emulation payoff gradient from (5) with the distribution
D(x) replaced by the survival function 1−D(x).7

3. Gradient Dynamics in Action Space

Given population and action continua and unique labeling of each consumer
by an allocation x, it follows that the state of the economy at time t ∈ [0,∞)
can be described by a probability density ρ(x, t) in action space, or equivalently
by a cumulative distribution function D(x, t) =

R x
0 ρ(y, t)dy.

8 We assume that
each consumer adjusts his or her action choices continuously, so that the state is a
continuous function of time.9

Following the gradient selection dynamics in organismic biology10 and the anal-
ogous gradient descent algorithms in machine learning,11 we assume that the time

7Mixed Excess and Emulation dynamics. An alternative dynamics obtains if we Þx the relative
weights of Emulation and Excess in the preference function via r(x, y) = amax(0, y − x) +
bmin(0, y − x), with b > a ≥ 0 (or a > b ≥ 0). Corresponding to the two inequalities, there
are two forms of equilibrium, one in which the asymptotic density is an atom, as in the pure
Emulation model, the other in which the asymptotic density results in a dispersed distribution,
as in the pure Excess model. The Þrst case, b > a ≥ 0, is consistent with �loss aversion,� as
documented in the behavioral economics literature (e.g., Rabin 1998, p.14). Note also that with
equal weights a = b = 1/2 the dynamical equations linearize, and the time dependent general
solution of the Cauchy problem can be expressed as a bilinear form (Green�s function) in conßuent
hypergeometric functions. In Section 6 we consider a dynamically more interesting and complex
extension, with interacting Excess and Emulation subgroups.

8The state space is the set of probability measures on [0, 1] endowed with the usual weak-star
topology. It is well known that every such measure can be represented by a distribution function,
i.e., the state at given time t is a function D(x, t) that is nondecreasing in x, with D(x, t) = 0
for x < 0 and D(x, t) = 1 for x ≥ 1. A probability density function is a non-negative function,
zero outside of [0, 1], that integrates to 1. The set of densities is an equivalent representation if we
include the improper densities known as Dirac delta functions.

9Our approach is consistent with stochastic approximation theory, e.g., Ljung and Soderstrom
(1983), Benaim and Hirsch (1996), who show that key stability properties of discrete time stochas-
tic dynamics are captured by a continuous time formalism. See Binmore and Samuelson (1994)
for other reasons to focus on continuous time deterministic dynamics.

10See, e.g., Lande, 1982.
11See, e.g., Bishop, 1995, sec. 7.5.
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rate of change of the mean action

hxi =
Z 1

0

xρ(x)dx =

Z 1

0

[1−D(x, t)] dx,

is proportional to the mean payoff gradient, viz.

(10)
dhxi
dt

=

Z 1

0

φx(x,D)dD(x, t).

The relation (10) equates global averages. To obtain a full dynamic picture we
apply gradient dynamics to the averages over subintervals, so that

(11)
∂

∂t

Z x

0

[1−D(y, t)] dy =
Z x

0

φy(y,D)dD(y, t).

Differentiating (11) with respect to x, we have the local mass conservation law

(12) Dt(x, t) = −φx(x,D)Dx(x, t),
which holds in the absence of discontinuities in the distribution.12 In the discussion
to follow we refer to (12) as the Master Equation. The Master Equation states
that Dt(x, t), the rate of increase of total mass in the interval [0, x], is equal to the
rate at which mass moves leftward past point x. In turn, the mass ßow rate equals
the product of the density (Dx = ρ) and the gradient φx. Thus, we make the key
assumption that the mass velocity equals the gradient φx. The steeper the slope of
the payoff function, the more rapidly consumers adjust their actions as they climb
the local payoff landscape.13

To insure that all population mass remains in the interval [0, 1], we impose
boundary sign restrictions. At the upper boundary of the action set, x = 1, we
impose the condition φx(1, t) ≤ 0 in (12). At the lower boundary, x = 0, we impose
the condition φx(0, t) ≥ 0.
3.1. Master deterministic dynamical equations. Using the Emulation gradi-
ent φ

E

x (x,D) = c/x−D(x) of (5) in the Master Equation (12), we obtain the partial
differential equation

(13) Dt = Dx[D − (c/x)].
Using the Excess gradient φXx (x,D) = c/x− 1 +D(x) in (12), we obtain

(14) Dt = Dx[1−D− (c/x)].
12The conventional expression of mass conservation is

∂ρ(x, t)

∂t
+
∂q(x, t)

∂x
= 0,

where q(x, t) is the net ßux of mass per unit time, in or out of the inÞnitesimal action interval
[x, x+dx], and it is assumed that ρ, q are continuously differentiable. Given an appropriate choice
of ßux q(x, t), this conservation equation describes continuous time evolution in the absence of
shocks. In the text we choose a mass ßux of the form q(x, t) = φx(x,D)ρ(x, t).

13One can show that gradient dynamics emerge naturally when players respond optimally to
current circumstances and face adjustment costs that increase quadratically in the adjustment
speed. In particular, myopically rational players facing quadratic adjustment costs choose adjust-
ment rates Aφx(x, t), where A is a positive factor proportional to ∆t for x ∈ (0, 1), and appropriate
boundary conditions hold at the endpoints x = 0, 1.
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Equations (13) and (14) specify the deterministic form of the dynamics in ac-
tion space under the two alternative reward patterns, given an initial cumulative
distribution function D(x, 0) = F (x), for Þxed c ∈ [0, 1).14

4. Steady state and dynamical solutions

4.1. Asymptotic Steady States. For any given distribution D and 0 < c < 1,
the Emulation gradient φ

E

x = c/x−D(x, t)
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i.e., D∗(x) = 1−c/x. Thus for 0 < c < 1, the asymptotic distribution D∗(x) follows
the hyperbolic arc 1 − c/x inside the unit square 0 ≤ x,D∗ ≤ 1. The asymptotic
distribution follows the lower edge D∗(x) = 0 (upper edge D∗(x) = 1) when the arc
is below (above)16 the square. Thus all consumers end up on the same indifference
curve given by the hyperbolic arc D∗(x) = 1− c/x. On this indifference curve the
marginal gain 1 − D∗(x) from increasing rank dependent consumption is exactly
offset by the corresponding marginal cost −c/x of ordinary consumption. The
payoff function is constant and maximal along the arc and at the upper endpoint
x = 1, but takes lower values c log x− x in the unpopulated zone [0, c).
4.2. General solutions for Emulation and Excess. The non-linear Emulation
equation (13) can be regarded as an integrable family of ordinary differential equa-
tions linked by the initial condition D(x, 0) = F (x) . To characterize solutions, it is
useful to deÞne an auxiliary variable z = z(x, t) implicitly given by D(x, t) = F (z).
In the Appendix we show that (13) can be integrated to obtain the implicit solution

(15) t =
z − x
F (z)

+
c

F 2(z)
ln

µ |c− zF (z)|
|c− xF (z)|

¶
.

The solution (15) is general in the following sense. Assume there exists a function
z = z∗(x, t) that satisÞes (15) for each x ∈ [0, 1] and t ≥ 0, given an arbitrary initial
distribution F (x) = D(x, 0) and Þxed c ∈ [0, 1). If z∗(x, t) is single valued, (13)
has the solution D(x, t) = F (z). On the other hand, if z∗(x, t) is multiple valued
for some (x, t) then the solution incorporates a shock wave (see Section 5).
To Þx ideas, we Þnd the explicit solution for the case c = 0 and the uniform

initial distribution F (x) = 0, x < 0; F (x) = x , x ∈ [0, 1]. Given a uniform initial
distribution D(x, 0) = x, (15) gives z = x

1−t . Hence the required c = 0 solution is

(16) D(x, t) =
x

1− tΘ(1− t− x), 0 < t < 1,
with associated density

(17) ρ(x, t) =
1

1− tΘ(1− t− x), 0 < t < 1.
Figure 1 Caption. Evolution of probability density for Emulation rule with

initial uniform distribution and pure rank dependent consumption.
Equation (16) tells us that during the time interval 0 < t < 1 households decrease

their consumption of ordinary goods and increase rank dependent consumption so
as to maintain a uniform distribution in x on the (shrinking) interval 0 < x ≤ 1− t.
Density functions for increasing values of t are shown in Figure 1. At t = 1 the
time paths for all households cross, and all consumers cluster in a delta-function
singularity at x = 0. For t > 1, conservation of probability mass in the unit inter-
val and gradient adjustment imply there is no further change in the distribution.
For t ≥ 1, every household devotes all resources to rank dependent consumption,
D(x, t) = Θ(x), and all population is clustered in an atom at x = 0.
Figure 2 illustrates the evolution of the cumulative distribution function when

ordinary consumption has positive weight c = .05. From Theorem 1, the long run
equilibrium distribution becomes concentrated at an interior point, rather than at
x = 0 as in the c = 0 case.

16The arc cuts the upper edge of the square only in the less interesting case c > 1.
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Figure 2 Caption. Time slices of the cumulative distribution function D(x, t)
for c = .05, given Emulation dynamics.
Figure 3 shows the evolution of the distribution function for Excess dynam-

ics, given a suitable initial distribution with c = .05. The distribution converges
smoothly to the predicted hyperbolic distribution. Note that the extreme x = 1 allo-
cation (i.e., no rank dependent consumption) is chosen by the fraction 1−(1−c/x) =
c, or 5%, of the population. The remainder of the population make dispersed choices
ranging up to 95% rank dependent consumption.

Figure 3 Caption. Time slices of the of the cumulative distribution function
D(x, t) under Excess dynamics, for utility parameter c = 0.05. Note the asymptotic
equilibrium on the hyperbolic curve D∗ = 1− c/x.

5. Population shock waves under Emulation

Figures 2 and 3 illustrate smooth progression to long run equilibrium. Another
dynamical possibility is the emergence of sharply deÞned subgroups at Þnite time.
These sharply deÞned subgroups are associated with moving jump discontinuities,
or shock waves, in the action distribution. Shock waves are an artifact of the deter-
ministic form of the model. They appear when the initial distribution is sufficiently
steep that the nonlinearity in (13) creates a �breaking wave.� As in ocean surf, the
break occurs because the velocity of the upper part of D(x, t) exceeds the velocity
of the lower part, and the waveform becomes vertical. After the break there is a
moving discontinuity in the distribution. The size of the discontinuity represents
the cluster mass, the fraction of consumers with an identical consumption pattern.
Keeping in mind a larger context, to be discussed in Section 6, in which there is
Brownian uncertainty about the shape of the local payoff landscape, one may in-
terpret shocks as markers for clustering in the limit in which uncertainty about the
local topography goes to zero.
Moving shocks interior to the action interval [0, 1] occur under Emulation for

quite general initial conditions. A shock occurs at a time and location such that
the waveform D(x, t) = F (z) becomes vertical. A vertical wavefront requires that
the partial derivatives zt, zx become singular. From (15) we have

(18) zt =
F (z)

1− tf(z) + cγz(z, x) ,

where f(z) = F 0(z) is the initial density, and

γ(z, x) ≡ 1

F (z)
ln

µ |c− zF (z)|
|c− xF (z)|

¶
.

From (18), a shock occurs at time t∗ and action x∗ if

(19) t∗f(z) = 1 + cγz(z, x∗).

A shock Þrst appears for the smallest value of t∗ such that some real z ∈ [0, 1] sat-
isÞes equation (19). The theorem that follows formally characterizes the conditions
for a shock wave for small c.

Theorem 2. Shocks. Let the initial distribution F (x) be thrice continuously
differentiable, with a regular strict maximum at x = q ∈ (0, 1). Then for all
sufficiently small c > 0 , the solution of (15) has a moving interior shock. Up to
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Þrst order in c, the shock emerges at time

t∗(c) = 1/f(q) + cT (q) +O(c2)

and location

x∗(c) = q − F (q)/f(q) + cX(q) +O(c2) ∈ (0, 1).
The functions T (q), X(q) are given in the Appendix.
Proof. See the Appendix.
To illustrate the qualitative features of shocks, we describe the dynamics in the

special case where c = 0 and initial density f(x) = 6x(1− x). In this special case,
the mode of the initial density occurs at x = 1/2, and symmetry about x = 1/2
implies F (1/2) = 1/2. At the mode the initial density f(1/2) = 3/2. Using these
values in Theorem 2, we observe that the shock begins at time t∗(0) = 2/3 and at
location x∗(0) = 1/6.
For given t ≥ t∗, the state is described by three simultaneous equations. The Þrst

two equations come from the smooth solution (15) applied to the leading and trailing
edges of the shock, with locations zL, zR expressed in terms of the auxiliary variable
z. The third equation follows from the principle of population mass conservation:
the vertical line at x = s in the (x, z) plane cuts the S-shaped level curve described
by (15) so that the two lobes have equal area. (See the Appendix.)
In the present special case we obtain shock position

(20) s(t) =
1

2
(1− t)

and magnitude

(21) F (zR)− F (zL) = 1

t

r
3− 2

t

for t ∈ (2/3, 1). For t ≥ 1, all mass is clustered at the boundary point x = s = 0.
Figure 4 shows the time development of the shock. Note that the shock magnitude
grows until it exhausts the total probability mass at t = 1, as indicated by (21).

Figure 4 Caption. Time slices for the cumulative distribution function D(x, t)
under Emulation, for pure rank dependent consumption c = 0, showing the devel-
opment of a shock wave. Note that the shock initiates at t = t∗ = 2/3, and that for
t ≥ 1 the shock magnitude exhausts the entire probability mass.
A shock wave in this context may be interpreted as follows. Consider a con-

sumer, labelled P , whose initial action is at x = 1/2, the peak of the density. Until
a shock occurs, P remains alone on the characteristic curve indexed by z = 1/2.
However, the nonlinear dynamics imply that P chooses to decrease x (and increase
rank dependent consumption) more rapidly than do consumers with initially lower
x. Consequently, at time t∗ and ordinary consumption level x∗, P begins to overtake
those other consumers. Given our assumption of identical underlying preferences,
P cannot �pass� other individuals because his or her behavior is identical to theirs
once he attains the same lower level of ordinary consumption x. Instead, he clumps
together with them, and a shock is created. The process continues. The new sub-
group subsequently overtakes consumers with lower x, and is in turn overtaken by
consumers whose initial x is slightly higher. Thus, beginning at (x∗, t∗) a growing
cluster of consumers with identical consumption patterns develops, and there is col-
lective movement towards lower ordinary consumption and higher rank dependent
consumption.
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Compressive shocks of this sort do not occur under Excess dynamics. Instead,
from any initial state 17 the distribution function D(x, t) converges smoothly to the
hyperbolic arc D∗(x) = 1 − c/x truncated at the boundaries of the unit square.
Suppose that at time t ≥ 0 the distribution D(x, t) crosses the arc 1− c/x at some
point ex ∈ (c, 1). At x = ex the marginal gain 1 −D(x, t) from increasing rank de-
pendent consumption is exactly offset by the decreasing marginal cost c/x. If the
slope of DX(ex, t) is less than the slope c/ex2 of the hyperbolic arc at x = ex, the
marginal gain 1−D(x, t) of slightly more rank dependent consumption is less than
the marginal cost of ordinary consumption, and utility therefore increases as rank
dependent consumption decreases. The reverse is true for consumers with slightly
less rank dependent consumption. Therefore, just as in Emulation dynamics, popu-
lation mass moves towards ex from both directions, and the slope of D at ex increases
as t increases, while the intersection point x = ex remains Þxed. However, if Dx(ex, t)
exceeds the slope of 1−c/x at ex, the marginal gain 1−D(x, t) of slightly more rank
dependent consumption exceeds the marginal cost c/x, leading to a further increase
of rank dependent consumption.18 Likewise, consumers with 1−x slightly less than
1−ex further decrease rank dependent consumption. So mass moves away from ex in
both directions, and Dx(ex, t) decreases as t increases. The population distribution
D(x, t) thus decreases where it is above the arc 1 − c/x and increases where it is
below that arc. In all cases D(x, t) ultimately converges to D∗(x) = 1− c/x where,
as observed earlier, every individual attains the same maximal level of utility.

6. Two-group asymptotic equilibrium under uncertainty

Outcomes are more complex if we allow Excess and Emulation subgroups to
interact in the presence of random imprecision in agents� knowledge of the local
landscape. We shall discuss the asymptotic equilibria that result when the two
subgroups have Þxed proportions PE + PX = 1. For simplicity, we assume the
tradeoff parameter c, the diffusion rate k, and the (implicit) timescale that sets the
adjustment rate are the same for the two groups. We incorporate Brownian noise
in the dynamic equations in the form of an additive diffusion term kDxx, where the
diffusion rate (or rate of information loss) is k .

17Even with an initially homogeneous distribution such as F (x) = Θ(x−1/2), in Excess mode
a rarefaction wave forms in which the distribution spreads out and disperses and converges to the
same hyperbolic arc. See, e.g., Logan (1994, pp. 86-87) for a discussion of rarefaction.

18This behavior cannot occur under Emulation because there the marginal return to rank
dependent consumption is given by the increasing function D(x, t), rather than the decreasing
function 1−D(x, t).
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The coupled dynamics then follow from the system19

(22) DEt = kD
E
xx +D

E
x [D− (c/x)]; DXt = kDXxx +DXx [S − (c/x)],

and equilibrium occurs for

(23) kDExx = D
E
x

³ c
x
−D

´
; kDXxx = D

X
x

³ c
x
− 1 +D

´
,

for Emulation and Excess respectively. In (23) the respective mass fractions of the
two subgroups are DE,X(1) = PE,X , and we have written D = DE +DX .
In terms of densities, (23) becomes, with ρ = ρE + ρX ,

(24)
k

ρE
dρE

dx
=
c

x
−
Z x

0

ρ(x0)dx0;

(25)
k

ρX
dρX

dx
=
c

x
− 1 +

Z x

0

ρ(x0)dx0.

From (25, 24) we observe that equilibrium occurs when the fractional increase of
agents populating the action interval [x, x+dx], due to diffusion, equals the payoff
per capita lost as the result of diffusion. In integral form, deÞning α ≡ c/k,
(26) ρE(x) = xαe−

1
k

R x
0
D(x0)dx0

;

(27) ρX(x) = xαe−
1
k

R x
0
S(x0)dx0

.

Equations (26,27) suggest a qualitative picture in which the small x behavior of the
densities is set by an intragroup balance between diffusion and ordinary consump-
tion that results in the power law ρ ∼ xα, while the large x behavior is set by a
global intergroup interaction with major contributions from the x regions in which
the two densities take their maximum values. The sign of the right-hand side of
(24) is determined by c− xD(x), and the monotonicity of xD(x) therefore implies
that the Emulation equilibrium density is unimodal for all c, with an interior mode.
In contrast, the sign of the right-hand side of (25) is determined by c−xS(x). But
xS(x) = 0 for x = 0, 1 and therefore necessarily takes a maximum value µ < 1 at an
action interior to [0, 1]. Thus the Excess density is monotone increasing for c > µ.
For c ≤ µ , (25) shows ρX increases at both boundaries with elasticity c/k ≡ α,

19With c = 0 equations (22) take the form of the viscous Burger�s Equation, an analytically
solvable nonlinear partial differential equation much studied in ßuid dynamics. See, e.g. Whitham,
1974, chapt. 4. It is unlikely that analytic solutions for c 6= 0 can also be obtained. The full
equations (22) do not satisfy the Painleve property (Weiss et al, 1983), even in the uncoupled
form. Furthermore, one proves, using the L8 Lie alebraic test (Ibragimov 1994), that there exists
a linearizing change of variables for the uncoupled form of the equilibrium equations (23) only for
c = 0.
With c 6= 0, but in the absence of the nonlinear terms DDx, equations (22) can be transformed

into the imaginary time Schrodinger equation for the hydrogen atom, which is integrable in terms
of Whittaker (conßuent hypergeometric) functions. See, e.g., Grosche and Steiner, 1998. This
suggests a useful interpretation of the dynamics of the two-group model. There is a background
dynamics in which there are random ßights between actions x, x0 chosen at respective times t, t0,
with transition probabilities G(x, t;x0, t0) set by the Green�s function of the c = 0 limit of the
model. These ßights begin and end with �transactions� among multiple pairs of actors represented
by the nonlinear terms DDx. Following this reasoning, one can formulate the system (22) as a
pair of coupled nonlinear integral equations that in principle can be solved by iteration.
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implying ρX has, at minimum, one interior maximum and one boundary maximum
at x = 1, a fortiori bracketing at least one interior minimum. This conÞguration
corresponds to the sign pattern for Excess in the deterministic case. Recalling the
discussion in Section 4, we see that the introduction of uncertainty in the shape
of the landscape causes the asymptotic cluster under Emulation to acquire a Þnite
spread of magnitude roughly

√
k. Given Excess dynamics, for sufficiently large c,

the payoff cost of clumping is sufficiently large that the equilibrium density shows
the same pattern of monotone increase as in the deterministic case. When c is
small, diffusion allows clustering at the boundary x = 1 and at an interior point,
for sufficiently small x. The Excess density also shows a diffusive spread of order√
k, as expected.
In Figure 5 we show the two-group equilibrium for roughly equal weights of the

two groups. We choose parameters c = .05, k = .01. Note the long tail of the
Excess density and the subgroup of population with pure ordinary consumption
at x = 1. The maxima occur for zero payoff (cf.(23)). In the Excess density the
total distribution D << 1 for x, c sufficiently small (cf.(27)). The corresponding
maximum thus sits at x ∼= c. The Emulation maximum occurs to the right of the
bulk of the Excess mass, implying a position x ∼= 2c.

Figure 5 Caption. Probability densities for two-group model with relative
weights .47, .53 for Emulation and Excess respectively, and with tradeoff parameter
c = .05, and information diffusion rate k = .01
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density has a large rank dependent cluster, an extended tail and a small subgroup
of individuals who prefer ordinary consumption.
The model analyzed in this paper is one example of an inÞnite class character-

ized by the following features. (1) The equivalent dynamics in discrete time follow
a Markov process, so that the continuous time picture is given by an evolution
equation. (2) The dynamics conserve population mass. (3) The dynamics incorpo-
rate a random walk in action space associated with uncertainties in the perceived
local preference landscape. (4) There are nonlinear links between individual agents
due to pairwise ranking. From preliminary analysis, we believe that constructing
empirically testable versions of such models will require considering the joint distri-
bution of income together with the allocation between ordinary and rank dependent
consumption. We conjecture that the full solutions of models of the extended type,
including macroshocks, will incorporate the spontaneous creation and disappear-
ance of clumps of agents, and that the clumping process will then fully describe
the microeconomic dynamics. This is consistent with previous work on Burger�s
equation with stochastic forcing (e.g., Fogedby 1998).
Given a model that describes the creation and dissipation of clusters, it should

be possible to apply these ideas to asset pricing, and in particular to asset price
bubbles. The equilibrium structure of the Excess density, described in Section 6, is
achieved via a balance between the tendency to cluster in preference for rank de-
pendent consumption and the tendency to disperse with a preference for ordinary
consumption. This suggests that when there is non-price linkage and Brownian
uncertainty, a mechanical rule for clustering can implicitly carry with it a rule for
dispersive behavior. Thus there emerges a possible alternative for describing as-
set price bubbles, distinct from recruitment and contagion schemes, and also from
models based on rational expectations.20 In asset markets non-price linkage can oc-
cur when investors adjust their asset portfolios to achieve or exceed recent returns
received by other investors. This seems a useful key for describing the collective ac-
tions of money managers, whose compensation is heavily rank dependent. To apply
models of the type considered here, one may characterize the investor population in
terms of portfolio risk measures (e.g., beta), and model how the asset distribution
changes over time, assuming a return to mimetic behavior. Such an extension will
be more complex, because it necessarily involves both price (or asset return) and
non-price interdependence. If the model is applicable, we expect clustering in both
the bubble creation and dissipation phases.

8. Appendix: Proofs and Derivations

This appendix collects derivations and proofs omitted in the text, in the same
order as the related text material.

8.1. Theorem 1. Clustering. Let the distribution D(x, t) be a solution to (13)
for a given initial condition D(x, 0) = F (x). Then D(x, t) converges pointwise as
t→∞ to Θ(x− ex), where ex = sup{x ∈ [0, 1] : xF (x) < c}.21

20See generally, Shiller, 2000, for a recent discussion of alternative approaches to asset price
bubbles.

21Remark. The proof below is written out for the case that D(x, t) is continuous in x for all
t ≥ 0 with density ρ(x, t). The logic also applies to the class of distributions D(x, t) with jump
discontinuities, but the proof requires heavier notation.

Notation: sgn(z) = −1, 0,or 1 indicates whether z is negative, zero or positive.
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Lemma. For all x ∈ [0, 1] and all t ≥ 0, we have sgn [D(x, t)− c/x] = sgn [x− ex] .
Proof of Lemma. Set 0 < c < 1. Let x = ex ∈ (0, 1) solve F (x) = c/x. The

solution x = ex is unique and interior because the function F (x)−c/x is continuous,
strictly increasing, negative at x = 0 and positive at x = 1. Hence the above sign
relation holds at time t = 0. Furthermore, no mass moves past the point x = ex
at t = 0 because the velocity Þeld at x = ex is D(ex, 0) − c/ex = 0. The same ßow
restriction holds at later times by the same argument. Thus D(ex, t) = F (ex) holds
in t ≥ 0, and the conclusion holds for all t ≥ 0.¥

Remark. In the case in which D(x, t) is discontinuous in x one concludes a
fortiori that no mass moves past ex. By examining the left and right limits of the
gradient at x = ex, one sees that the point x = ex absorbs mass from both directions.

Proof of Theorem. It suffices to construct a Ljapunov function V and verify:
(a) as a functional on the space of cdf�s on [0, 1], V attains a global minimum at
D∗, the unit step function at ex; and (b) as a function of time along a solution
D(x, t), the value of V is strictly decreasing at all times when D(x, t) 6= D∗. To
verify (a), let V (t) =

R 1
0 (x − ex)2ρ(x, t)dx. The integrand is zero at x = ex and

where ρ(x, t) = 0. Elsewhere it is positive. Thus (a) is veriÞed. To verify (b)
integrate by parts to obtain V (t) = (1 − ex)2 − 2 R 10 (x − ex)D(x, t)dx. Hence the
time derivative exists and is equal to úV = −2 R 1

0
(x − ex)Dt(x, t)dx. Using (13), we

have úV = −2 R 10 (x− ex)[D(x, t)− c/x]ρ(x, t)dx. The Lemma now tells us that úV is
negative except at D(x, t) = D∗, and (b) follows. ¥

Remark. In the discontinuous case one needs to use Stieltjes integrals but the
argument is unchanged.

8.2. Derivation of General Solution to (13). Write (13) in the form

(28) Dt − [D− (c/x)]Dx = 0.
A solution D(x, t) of (28) deÞnes a surface in [D(x, t), x, t] space. Along any such
integral surface the total time derivative is

(29) dD(x, t)/dt = Dt +Dxdx/dt.

Comparing (28) and (29), we see that (28) deÞnes a set of curves along each of
which

dD/dt = 0,(30)

dx/dt = c/x−D.(31)

Equation (31) describes the particular time path, or characteristic curve, x(t) fol-
lowed by a consumer with position x(0) at time t = 0. Equation (30) tells us that
along such a characteristic curve, D(x, t) = constant.
To characterize solutions of (30, 31), it is useful to deÞne an auxiliary variable

z = z(x, t) implicitly given by D(x, t) = F (z). Because D is constant along each
characteristic curve deÞned by (30, 31), we label each such curve by the corre-
sponding value of z. Separating variables and substituting F (z) for D, we have
dt = xdx/(c − xF (z)). Because z is Þxed along any characteristic, this expression
can be integrated directly using the textbook formula

x

1− ax =
1

a2
d

dx
[1− ax− ln |1− ax|].
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We obtain

(32) t+ t0(z) =
1− xF (z)/c− ln |1− xF (z)/c|

F 2(z)/c
.

In (32), the integration constant t0(z) is constant along each characteristic but
varies across characteristics. By the deÞnition of z, x = z at t = 0. Hence

(33) t0(z) =
1− zF (z)/c− ln |1− zF (z)/c|

F 2(z)/c
,

and we may subtract (33) from (32) to obtain the implicit solution

t =
z − x
F (z)

+
c

F 2(z)
ln

µ |c− zF (z)|
|c− xF (z)|

¶
of the master equation (13), as given by equation (15) of the text.

8.3. Shock dynamics. We derive the behavior over time of the shock position and
magnitude, given an initial probability density f(x) and corresponding cumulative
distribution F (x).We assume Emulation mode and for closed form solutions we set
the tradeoff parameter c = 0. The c = 0, pure rank dependent consumption limit
enables an analytic solution while preserving the qualitative behavior of the shock
wave.
In general, three conditions determine the shock position s(t) and the leading

and trailing values zL,zR that mark the left and right edges of the shock in terms
of the auxiliary variable z.22 The Þrst two conditions apply the solution (15) of the
underlying dynamic equation to the leading and trailing edges of the shock, viz.

(34) t =
zL − s
F (zL)

+
c

F 2(zL)
ln

µ |c− zLF (zL)|
|c− sF (zL)|

¶
;

(35) t =
zR − s
F (zR)

+
c

F 2(zR)
ln

µ |c− zRF (zR)|
|c− sF (zR)|

¶
,

The third condition comes from applying the integral form of the underlying con-
servation law across the shock. Substitution of φy(y,D) = c

y −D(y, t) into equation
(11) yields

(36) − ∂
∂t

Z x2

x1

D(y, t)dy = −
Z D(x2,t)

D(x1,t)

·
c

y
−D(y, t)

¸
dD(y, t).

Let D(x, t) have a jump discontinuity at x = s(t), and choose x1 < s(t) < x2. Then
in the limit as x1 → s(t) from below and x2 → s(t) from above, (36) becomes

− [F (zR)− F (zL)] ds
dt
= −c [F (zR)− F (zL)]

s
+
1

2

£
F 2(zR)− F 2(zL)

¤
.

On division by the shock magnitude F (zR)− F (zL), we obtain the shock velocity
22These are the Rankine-Hugoniot conditions. The procedure used here to derive the equal

area condition (40) below is laid out in Whitham (1974). See Smoller (1994) for formal discussion.
To our knowledge, the derivation of the shock initiation time and magnitude, given an initial
symmetric beta density, is new.
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(37)
ds

dt
= −1

2
[F (zL) + F (zR)] +

c

s
.

For c = 0, (34) and (35) can be combined and expressed in the symmetric forms

(38) s =
1

2
[zL + zR]− t

2
[F (zL) + F (zR)],

(39) t =
zR − zL

F (zR)− F (zL) .

Furthermore, on differentiating (38) with respect to t, equating the result with the
c = 0 form of (37), and substituting for t from (39), we obtain

[zR − zL]
£
F 0(zL)

.
zL + F

0(zR)
.
zR
¤
= [F (zR)− F (zL)]

£ .
zL +

.
zR
¤
,

which integrates to the �equal area condition�

(40)
1

2
[F (zL) + F (zR)] [zR − zL] =

Z zR

zL

F (z)dz.

Equation (40) states that the shock cuts off equal areas from the breaking wave-
front, preserving population mass. This interpretation becomes transparent if we
rewrite (40) in the formZ bz
zL

½
1

2
[F (zR)− F (zL)]− F (z) + F (zL)

¾
dz =

Z zR

bz
½
F (z)− F (zL)− 1

2
[F (zL)− F (zR)]

¾
dz,

which explicitly equates the areas swept out by the right and left �lobes� of the
shock. Note that the crossover point of the shock, z = bz, is determined by F (bz) =
1
2 [F (zL) + F (zR)].
To determine the shock initiation time t∗, it is helpful to write (39) in terms of the

density f(z). Introduce ∆ = [zR − zL] /2,
_
z = [zR + zL] /2, so that ∆(t∗) = 0 when

a shock initiates. Then (39) becomes

(41)
1

2∆

Z ∆

−∆
f(z +

_
z)dz =

1

t
,

and in the limit ∆→ 0 we have

(42)
1

t∗
= f(

_
z).

Certain basic relations follow from the assumed unimodality and symmetry about
z = 1/2 of the density f(z). Symmetry f(z + 1/2) = f(−z + 1/2) gives _z = 1/2,Z 1/2−∆

0

f(z)dz =

Z 1

1/2+∆

f(z)dz,

and therefore

(43) F (zL) + F (zR) = F (1/2−∆) + F (1/2 +∆) = 1.
Using

_
z = 1/2, (38) and (43) give the position of shock at time t as

(44) s(t) =
1

2
(1− t), t > t∗,

where from (42), the shock initiation time satisÞes

(45)
1

t∗
= f(1/2).
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In the symmetric c = 0 case, the shock therefore reaches position s = x = 0 at
t = 1.
The shock initiation time and magnitude now follow for the special case described

in the text. This solution is one instance from an inÞnite class of analytic, c = 0
shock solutions for the conservation law (13), for the family of initial unimodal beta
densities symmetric about z = 1/2,

(46) fa(z) =
za−1(1− z)a−1

B(a, a)
, a > 1,

with corresponding distributions Fa(z), where the beta function

B(a, a) =
[(a− 1)!]2
(2a− 1)! .

.
Equations (45,46) give the shock initiation time

(47) t∗ =
21−2a

B(a, a)
.

From (39), the shock magnitude is given implicitly by

(48) 2Fa(1/2 +∆)− 1 = 2∆

t
.

For the beta density a = 2 considered in the text, F2(z) = z2(3− 2z), and (48)
reduces to a quadratic equation in ∆,

(49)
1

t
=
3

2
− 2∆2.

From (49) or (45), the shock initiates at t∗ = 2/3. Equation (44) gives the initial
shock position x∗ = 1/6, as stated in the text. The shock magnitude thereafter is
given by (21).23

8.4. Theorem 2. Shocks. Let the initial distribution F (x) be thrice continuously
differentiable, with a regular strict maximum at x = q ∈ (0, 1). Then for all
sufficiently small c > 0 , the solution of (15) has a moving interior shock. Up to
Þrst order in c, the shock emerges at time

t∗(c) = 1/f(q) + cT (q) +O(c2)

and location

x∗(c) = q − F (q)/f(q) + cX(q) +O(c2) ∈ (0, 1).
Here,

T (q) =

·
γz
f(q)

− γzz
f 00(q)

+
γzf

0(q)
f(q)f 00(q)

¸
;

X(q) =

·
γ − γzF (q)

f(q)
+
γγzzF (q)

f 00(q)
− γzf

0(q)F (q)
f(q)f 00(q)

¸
,

where, deÞning Q = ln qf(q)
qf(q)−F (q) ,

23A detailed derivation of (44) and (48) is available from the authors on request.
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γ =
Q

F (q)
;

γz =
1

qF (q)
− Qf(q)
F 2(q)

;

γzz =
2Qf(q)

F 3(q)
− q

2f 0(q)Q+ 2qf(q) + F (q)
q2F 2(q)

.

Proof. Recall from equation (15) that the general implicit solution to the initial
value problem is 0 = α1 ≡ tF (z)− z + x− cγ, where

γ(c, z, x) ≡ 1

F (z)
ln
|zF (z)− c|
|xF (z)− c| ,

z is the auxiliary variable deÞned by F (z) = D(x, t), and we have made the depen-
dence on c explicit. Recall further that any boundary point (x, t) of a shock is a
singularity, i.e., a point where the denominator of zt (or zx) as given in equation
(18) is zero. That is, we have 0 = α2 ≡ 1 − tf(z) + cγz, where f = F 0 is the
initial density.We seek the earliest time where a singularity occurs, i.e., a minimal
positive value of t in the equation 0 = α2. The associated Þrst order condition is
0 = α3 ≡ cf(z)γzz − (cγz + 1)f 0(z).
For Þxed c ≥ 0, let Φ(c, ·, ·, ·) : [0, 1]2×R+ → R3 be the function that maps the

point (z, x, t) to (α1,α2,α3). Consider Þrst the case c = 0. Here 0 = α3 implies
f 0(z) = 0, so the shock Þrst appears on the characteristic curve associated with
the interior maximum z = q. From 0 = α2 we infer that the shock initiates at
time t∗(0) = 1/f(q), and from 0 = α1 we infer that the initial shock location is
x∗(0) = z − t∗F (z) = q − F (q)/f(q). It is clear that 0 < x∗(0) < q < 1. We have
x∗(0) > 0 because, at the global maximum q > 0 of f(q), F (q) =

R q
0 f(y)dy < qf(q).

Thus we have an interior shock emerging in Þnite time for c = 0.
For small positive c, we apply the implicit function theorem to Φ(c, ·, ·, ·). The key

condition (see e.g. Spivak, 1965) is that the Jacobian determinant |J(α1,α2,α3; z, x, t)|
is not zero when evaluated at the point c = 0, z = q, x = q − F (q)/f(q), and
t = 1/f(q). Explicitly,

|J| =
¯̄̄̄
¯̄
∂α1

∂z
∂α1

∂x
∂α1

∂t
∂α2

∂z
∂α2

∂x
∂α2

∂t
∂α3

∂z
∂α3

∂x
∂α3

∂t

¯̄̄̄
¯̄ =

¯̄̄̄
¯̄ tf(z)− 1 1 F (q)
tf 0(q) 0 −f(q)
f 00(q) 0 0

¯̄̄̄
¯̄ =

¯̄̄̄
¯̄ 0 1 F (q)
1 0 −f(q)
f 00(q) 0 0

¯̄̄̄
¯̄ = −f(q)f 00(q).

The Jacobian is strictly positive because the density is positive at any maximum
and has a negative second derivative at a regular maximum. Hence the desired
implicit functions exist and have derivatives (evaluated at the same point) given by z∗0(0)
x∗0(0)
t∗0(0)

 = −J−1

 ∂α1

∂c
∂α2

∂c
∂α3

∂c

 = −

 0 0 1
f 00(q)

1 F (q)
f(q)

−F (q)
f(q)f 00(q)

0 −1
f(q)

1
f(q)f 00(q)


 −γ
γz
f(q)γzz − γzf 0(q)



=


f(q)γzz−γzf

0(q)
f 00(q)

γ − γzF (q)
f(q) + γzzF (q)

f 00(q) − γzf
0(q)F (q)

f(q)f 00(q)
γz

f(q) − γzz

f 00(q) +
γzf

0(q)
f(q)f 00(q)

 .
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The values of γ and its derivatives are readily calculated at c = 0. Using the
notation Q = ln |z| / |x| = ln qf(q)

qf(q)−F (q) , we Þnd that at the relevant point [z = q;
x = q − F (q)/f(q); t = 1/f(q)] we have

γ =
Q

F (q)
,

γz =
1

qF (q)
− Qf(q)
F2(q)

,

and

γzz =
2Qf(q)

F 3(q)
− q

2f 0(q)Q+ 2qf(q) + F (q)
q2F 2(q)

.

The expressions in the Proposition now follow from the Þrst order Taylor expan-
sion at c = 0. They are valid as long as the shock position x∗(c) remains above the
zero ex(c) of the gradient φx corresponding to the condition x/c = F (x). Clearlyex(0) = 0, and ex(c) is continuous in c because F has a density, so the condition
x∗(c) > ex(c) holds for sufficiently small c. ¥
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