Abstract

Evolutionary game models analyze strategic interaction over time; equi-
librium emerges (or fails to emerge) as players/traders adjust their actions
in response to the payoffs they earn. This paper sketches some early and
some recent evolutionary game models that contain ideas useful in modeling
financial markets. It spotlights recent work on adaptive landscapes. In an
extended example, the distribution of player/trader behavior obeys a vari-
ant of Burgers’ partial differential equation, and solutions involve travelling
shock waves. It is conjectured that financial market crashes might insight-
fully be modeled in a similar fashion.
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1. Introduction

Mainstream economics and finance theory assumes equilibrium, i.e., that all mar-
ket participants choose optimally given the choices of other participants. Equi-
librium definitions have increased in sophistication over the last 50 years to en-
compass interdependent markets (general competitive equilibrium, e.g., Arrow
and Hahn, 1971), participants with market power (Nash equilibrium, e.g., Shu-
bik, 1982), and participants with private information (Bayesian Nash equilibrium,
e.g., Hirshleifer and Riley, 1994).

Physicists and market participants can learn much from equilibrium models,
but in the end are likely to be dissatisfied. Equilibrium models do not tell us
when and how equilibrium might be achieved, in terms of how traders respond
in actual time to cues generated by other traders. The adaptation process allows
traders to make big profits and losses, and it may lead to equilibrium quickly or
slowly or not at all. It deserves careful study.

Unfortunately there is no canonical model of the adaptation process in finan-
cial markets or other economic settings. Numerous models of economic adaptation
have been proposed in the last decade or so. They increasingly rely, implicitly or
explicitly, on evolutionary game theory. As defined in Friedman (1998), evolution-
ary games have three primary characteristics that embody the mottoes "survival
of the fittest," "evolution not revolution," and "natural selection" respectively:

e monotone: higher payoff strategies displace strategies with lower payoff;

*My thanks to the Santa Fe Institute workshop participants for useful comments and to Steve
Anderson for reserach assistance.



e inertial: the player population takes real time to change behavior; and

e price-taking: players regard the present and future play of others as exoge-
nous as in a game against Nature; they don’t try to influence other players’
future choices.

On this definition, evolutionary game theory covers a vast intellectual territory
beyond the borders of equilibrium theory (which assumes no behavioral inertia
and assumes extreme rationality rather than monotonicity) and repeated game
theory (where players try to influence others’ future behavior). Much of the
territory remains uninhabited, but parts of it support intense recent activity,
witnessed in more than a dozen books and hundreds if not thousands of articles.
I will not attempt a systematic survey here, but more of a helicopter tour. Like
any tour guide with limited time, I'll disproportionately cover my favorite parts
and those I know best. T'll pay special attention to work that seems promising
for models of financial markets. Generally I cite good textbook treatments, not
always the original source or the latest work.

The next two sections lay out the main ingredients of an evolutionary game
model, and show how the classic work of the 1980s used the ingredients. Section 4
lists the underlying evolutionary processes that might be important in modeling
financial markets, and section 5 describes two illustrative models from the recent
literature. Section 6 points out some of the areas of greatest recent activity,
particularly models of learning in games. Section 7 presents unpublished work
on evolutionary games in which actions are chosen from an ordered continuum
(rather than a discrete unordered set), as in many financial market choices. Here
the payoff function can be visualized as a landscape that morphs as players adjust
their actions trying to increase payoff.

Section 8 summarizes an application of such gradient dynamics to the choice
of conspicuous vs ordinary consumption. It shows that, depending on specifica-
tion details, the long run equilibrium can either be clumped (e.g., all consumers
choose the same bundle) or dispersed. Perhaps of more interest, it explains how
transient dynamics can produce a moving, growing clump (a jump discontinuity
in the cumulative distribution function, interpreted here as an emerging "middle
class”). As in ocean surf, the discontinuity occurs because the velocity of the up-
per part of the distribution exceeds the velocity of the lower part, and a piece of
the distribution function becomes vertical. The last section conjectures how the
various ideas might be combined into an evolutionary model of financial markets
that can insightfully describe bubbles and crashes.



2. Evgame Model Ingredients

Evolutionary game models are constructed from the following ingredients:

e 1. k >1 populations, each with its own action set. The simplest example is

a single population playing a 2x2 symmetric bimatrix game, so the action
set is just the two alternative strategies. In a market game, we might have
a population of traders each with a price ¢ above which a unit is sold and
below which a unit is purchased. We might include a second population of
market makers, each of which has a bid price b and an ask price a. The
current state s is the distribution of actions chosen in each population.

2. A payoff (or fitness)! function. The simplest example is a matrix whose
(7,7)-th element is the payoff to a player choosing the i-th action when
. . 1 -1 .
the opponent chooses the j-th action, e.g., A = < 9 0 >f0r a version of
the prisoner’s dilemma. In a market game, the payoff typically would be
the trading profit given the trader’s buy or sell order(s) and the price(s)
determined by all traders’ actions. In general, the payoff for a player in
population k is a real-valued function fx(x,s) that is linear in own (mixed)

action = and possibly nonlinear in the state variable s.

3. Dynamics describing how behavior in each population responds to real-
ized payoffs. Standard examples such as replicator dynamics and smoothed
fictitious play will be given below.

4. One or more definitions of equilibrium. We will discuss leading examples
below, both static and dynamic.

3. Basic Evolutionary Game Theory and Applications

Maynard Smith and Price (1973; see also Maynard Smith, 1982) founded evolu-
tionary game theory on a static equilibrium concept called Evolutionarily Stable
Strategy (ESS). For a single population game the definition can be expressed in
terms of the current state s and a perturbed version s’ = ez 4 (1 — €)s. The
perturbed version is referred to as a (e-) small invasion of (z-) mutants. For a
single population the formal definition is as follows. The current state s is an

ESSif f(s,s') > f(z,s') for all x # s and for all € > 0 sufficiently small.

'In this paper fitness and payoff are synonymous. In some other papers, fitness is constructed

from a given payoff and other factors such as transmission rates.



The idea is that mutants in any small invasion have lower fitness and there-
fore no invasion can find a toehold to displace the current state. Standard game
theory would refer to ESS as a proper Nash equilibrium of a symmetric game.
For linear payoff functions (e.g., in matrix games) the inequality is independent
of invasion size and the definition can be re-expressed in its original form: either
f(s,s) > f(x,s), or f(s,s) = f(z,s) but f(s,z) > f(x,z). The generalization to
multipopulations is conceptually straightforward; see Cressman (1995) for tech-
nical details.

As an equilibrium concept, ESS has two shortcomings. First, it is not hard
to find games with multiple ESS or with no ESS. Second, although the idea
is dynamic (mutant invasions fail), the definition is static. One would like to
predict behavior beginning at an arbitrary initial state, and note when we have
convergence to specific equilibrium points. Such predictions, of course, depend
on the dynamics.

Replicator dynamics (Taylor and Jonker, 1978) are the first example of evolu-
tionary game dynamics and are still quite prominent. In biology the relevant pay-
off is fitness, defined as the growth rate. Abstracting from genetic complications,
it is natural in biology to assume that the growth rate of any action (or trait) rela-
tive to alternatives is its payoff relative to alternative payoffs. The standard defin-
ition of replicator dynamics assumes a single population with a finite number n of
alternative actions, so the state s = (s, ..., S,) is a point in the simplex > s; =1,
s; > 0. The i*" vertex of the simplex, denoted e’ = (0,...1,...,0), represents
an individual choosing pure strategy ¢ or (as the second argument in the payoff
function) the state where everyone plays i. It is easy to check that the population-
weighted average payoff at state s is f(s, s). Replicator dynamics then are defined
by the condition growth rate = relative payoff,? (ds;/dt)/s; = f(e',s) — f(s,s)
for each population fraction 7, or

ds;/dt = s;(f(e',s) — f(s,8)),i =1,...,n.

One nice result is that dynamically stable equilibria (i.e., the locally asymptoti-
cally stable steady states) of replicator dynamics include all ESS, as well as a few
other points such as the vertices. Multipopulation generalizations are straightfor-
ward. Discrete time versions are conceptually straightforward; see Weibull (1995)
for technical details.

In economic applications it is perhaps too strong to assume the growth rate
(or, alternatively, the rate of increase) in the fraction of the population employing
action ¢ is directly proportional to the relative payoff. It seems more reasonable

2 Another way to describe replicator dynamics is as the radial projection onto the simplex of
Lotka-Volterra dynamics (Friedman, 1991).



to assume only that over time higher payoff actions will crowd out lower payoff
actions. This more general case, called monotone dynamics, preserves many of
the nice results from replicator dynamics (Friedman, 1991; Samuelson and Zhang,
1992; Weibull, 1995).

I am aware of two financial market applications of early evolutionary game
theory. Conlisk (1980), apparently working independently of the biological liter-
ature, finds conditions under which agents that optimize at some cost can coexist
in dynamic equilibrium with cheap imitators. Cornell and Roll (1981) use a vari-
ant on biologists’ 2x2 "hawk-dove” matrix to address a same theme in financial
markets: when will costly analysis of fundamental value coexist with cheap rules
of thumb in choosing stock purchases? They find an interior (mixed) ESS of
costly informed traders and uninformed traders, characterized by a marginal in-
formation cost = marginal benefit condition and an endogenous market share
condition with sensible comparative statics.

The Cornell and Roll model, like other early evolutionary game models, as-
sumes pairwise random interactions described by payoff matrices and therefore
the payoff function is linear in the state variable s. This assumption is difficult
to reconcile with the more complex forms of market interaction that determine
asset price and asset returns. For example, in the simple competitive model de-
scribed in section 5 below, the the price is set by certain order statistics of s (the
marginal bids or asks) and the payoff function is highly nonlinear. Asymmetries
or stochastic components play a role in other market models.

4. Sources of Dynamics

The distinctive features of financial markets demand that evolutionary models be
constructed from scratch, not simply borrowed from biological or other applica-
tions. The dynamics are of special interest. From the outset we must recognize
that there is not just one all-purpose adaptation process that is appropriate for
all markets and all time scales. Rather, there are several quite distinct processes:

e Entry and exit (and mergers and acquisitions). The exit of bankrupt pro-
ducers and the entry of producers with new technology is perhaps the most
economically important example, e.g., Nelson and Winter (1982). Another
example, central to biologists but usually unimportant on economists’ time
scales, is birth and death leading to genetic evolution of agent populations
via natural selection. In financial markets we have new securities and new
investors entering occasionally and others exiting.



e Endogenous market shares. Even when the trader population is constant
and individual traders do not change behavior, we can have market-level
adjustment as traders with less profitable behavior lose wealth and market
share to traders with more profitable behavior, as in Blume and Easley
(1991). A fine grained variant considers how an individual trader employ-
ing a portfolio (or mixed) strategy increases weights on more successful
(:omponents.3

e Adaptive learning. Arguably the most important process over the most rel-
evant time scales (minutes to months) is that traders systematically change
their actions in response to personal experience. This will be the focus of
the next two sections.

e Learning variants include: observational learning in response to other traders’
experience, direct imitation of more successful traders’ actions, and active
learning by trying actions more for their informativeness than for their di-
rect profitability.

e Institutional evolution. The market rules themselves change in response to
competitive pressures, e.g., the NYSE no longer forbids after hours trading
in listed stocks. One could imagine formalizing some of the insights of North
(1990).

5. Learning in Markets: Two Examples

Two recent examples may help fix ideas. Many physicists regard the minority
game (Challet and Zhang, 1997) and the El Farol problem (Arthur, 1994) as
models that capture the congestion aspect of financial markets. The El Farol
problem can be described as a single population evolutionary game with two
choices for each of 100 players: stay home, or go to the bar El Farol, whose
seating capacity is limited. The payoff to going to the bar is -1 if 60 or more
players choose to go and is 41 if fewer than 60 do so. The payoff to staying home
is always 0. Bell et al (1999) take the probability p with which 1 is chosen as
the strategy, so the state s is a point in [0,1]'°°. There is a unique symmetric
Nash equilibrium in mixed strategies where everyone chooses p ~ 0.6 and receives

expected payoff 0. By contrast, there are lots ((16000)) of asymmetric pure strategy

3For example, Peter Muller of Morgan Stanley said in the May 2000 SFI workshop, ”We feed
the strategies that work.” Other practitioners echoed this theme and some mentioned specific
adjustment dynamics such as the Kelly rule, intended to maximize the growth rate of portfolio
value. From a population perspective, such changes are the same as adaptive learning.



equilibria with exactly 60 players choosing to go, and these equilibria are efficient
with average payoff 0.6.

Bell et al propose a discrete time learning algorithm in which each player
who goes to the bar increments the attendance probability p by an amount pro-
portional to (60 - current attendance), and players who stay home don’t update
p. The new values of p are truncated at below at 0 and above at 1. Using
techniques related to stochastic approximation (but with weaker assumptions),
they show that the stability of the discrete time learning dynamic on [0,1]*% is
the same as that of the ordinary differential equation ds/dt = G(s), where each
component of G is the expected value of the increment (60 - current attendance)
for a given player. Then they show that the ordinary differential equation (and
therefore the original learning dynamic) has a stable fixed point at each of the
efficient asymmetric Nash equilibria, but not at the inefficient symmetric mixed
Nash equilibrium. Convergence is exponential. The interpretation is that players
who learn from personal experience will rapidly and efficiently sort themselves
out into regular attendees and non attendees.

Let us now consider learning in the simplest true market institution, the call
market. A call market can be modeled as a two-population evolutionary game
of buyers (each with a privately known value) and sellers (each with a privately
known cost). Each period each buyer i submits a bid (the highest acceptable
purchase price for a single indivisible unit) b; and each seller j submits an ask
(the lowest acceptable sale price) aj. The demand revealed in {b;} and the supply
revealed in {a;} then are cleared at a uniform price p*.4 The payoffs are profits,
v; — p* for a buyer with value v; and p* — ¢; for a seller with cost c;.

When buyers’ values and sellers’ costs are drawn randomly every period, the
relevant static equilibrium concept is Bayesian Nash Equilibrium (BNE).? Here
each buyer optimally reduces her bid below value (and each seller increases his
ask above cost) to the point that (i) the marginal loss from the reduced probabil-
ity of transacting just matches (ii) the marginal gain conditional on transacting.
Rustichini, Satterthwaite and Williams (1994) compute BNE bid and ask func-
tions. The question is whether human traders learn (to behave as if they use)
these functions. For example, Figure 1 shows buyers’ values and actual bids in
one experimental session. Do these bids tend over time to come closer to the

“That is, p* maximizes transaction volume subject to the constraint that transacted bids are
are at least p* and transacted asks are at most p*. Existence of such a competitive equilibrium
price is guaranteed, but with indivisible units there is often a nondegenerate interval of such
prices, as explained for example in Cason and Friedman (1999).

®When values and costs are constant over time, then the relevant static equilibrium concept
is competitive equilibrium. See Friedman and Ostroy (1996) for an analysis of call market
convergence in this setting.



graph of the BNE bid function?

Cason and Friedman (1999) reduce the buyer’s learning problem to adjustment
of a single parameter, the slope of the bid function, i.e., the mark-down ratio of
bid relative to private value. Similarly, sellers try to learn the best mark-up ratio
of asks relative to private cost. The learning model assumes partial adjustment
of these ratios towards the ex post optimum. It can be written in terms of the
logarithm 7; of the mark-up (or -down) ratio in period ¢ and the value r{ that
would have been most profitable in hindsight:

rip1 — 1T = a+b(d, e, 0)(r] —r¢).

The adjustment coefficient b may depend on variables (d, e, 0) mentioned below.

The learning model is estimated with pooled data from all traders (4 buy-
ers and 4 sellers) in a series of laboratory market sessions, each with about 100
trading periods.® The parameter estimates indicate negligible autonomous trend
(a =~ 0) and positive adjustment towards the ex post optimum (b > 0). There is a
strong recency effect: the learning rate b is rather insensitive to a discount factor
d that represents accumulated experience. Perhaps the most striking finding is
a strongly asymmetric response to different kinds of ex post error (e): traders
respond strongly when they miss a trade (e = m) because they marked up (or
down) too aggressively, but hardly respond at all when they trade at a less fa-
vorable price by not being aggressive enough. The asymmetry is only slightly
attenuated in observational learning from other traders’ ex post errors (o).

Simulations show that the model can account for the main systematic devia-
tions from BNE predictions observed in the laboratory data. Indeed, convergence
in the simulations and in the laboratory is often closer in relevant cases to full
revelation (r = 0, or b = v and a = ¢, consistent with competitive equilibrium)
than to the BNE predictions, r ~ In 0.8 or In 0.9, depending on details of how the
clearing price is selected when it is not unique. The simulations track the median
trader’s markup (or markdown) rather well, but greatly understate variability
across individual traders.

6. Recent Developments

I now pause the tour to list some important areas we shall skip, and to point out
useful surveys and references. The standard textbook reference on evolutionary
game theory is Weibull (1995). Classic books include Maynard Smith (1982),

Separate estimates are also made by type of market session (e.g., whether traders have
previous experience) and for buyers and sellers, but the data are insufficient to allow separate
estimation of individual traders.



and Hofbauer and Sigmund (1988). Important single author collections include
Cressman (1992), Samuelson (1997), and Vega-Redondo (1996). Selten (1991)
is an amusing introduction to some modeling issues. Friedman (1998), a brief
”user’s manual,” includes a guide to the literature.

The text by Fudenberg and Levine (1998) briefly covers the classic material
but focuses on learning dynamics in bimatrix games (with two chapters on ex-
tensive form games). It is a good introduction to recent stochastic models. One
chapter emphasizes smoothed fictitious play, and connects it to stochastic ap-
proximation (introduced to microeconomists in the early 80s by Arthur, Ermolev
and Kaniovski, and to macroeconomists in the late 1980s by Marcet and Sar-
gent; (see also Benaim and Hirsch, 1999), to logit estimation, and to probability
matching behavior and reinforcement learning. It also presents stochastic adjust-
ment models in the style of Kandori, Mailath and Rob (1993) and Young (1993),
and notes that such models give sharp predictions on equilibrium selection but
neglect important issues regarding time scale and depth of basins of attraction.
The book also touches on important recent developments, such as local interac-
tion (e.g., Ellison, 1993), machine learning (e.g., Kivanen and Warmuth (1995),
and rule-based learning (e.g., Stahl, 1999).

Camerer (1999) summarizes recent laboratory evidence on learning in games.
His own work (most of it with Ho) hybridizes two of the main types of learning
models, reinforcement and belief learning. The logit choice model just mentioned
plays the key role in the quantal response equilibrium (QRE) model of McKelvey
and Palfrey (1995). QRE fits a variety of laboratory data pretty well, especially
when it allows the error amplitude to decline over time (e.g., Anderson, Goeree
and Holt, 1998). Chen, Friedman and Thisse (1997) independently develop QRE
and extensions to true learning models.

7. Landscape Learning

Some matrix game experiments allow estimation of individual player data (e.g.,
Cheung and Friedman, 1997), and the data can be interpreted using well estab-
lished theoretical models of heterogeneous populations, e.g., ESS or replicator
dynamics. There is no practical obstacle to running market experiments that
allow individual trader estimates, but there are no well established theoretical
models to help interpret the data. The problem is that traders’ action sets are
ordered continua (e.g., a range of prices or a range of markup ratios) rather than
the small discrete unordered sets assumed in standard evolutionary games.

In this section I describe some recent work on evolutionary game models
for continuous ordered action sets first introduced in Friedman and Yellin (1997,

10



denoted FY97 below). See also Basov (1999). For concreteness, take a large single
population of players (e.g., traders), each with action set A = [0, 1], the unit
interval. As in the finite action case, it is convenient to normalize the population
mass to 1, i.e., to express all variables in per capita terms. Now the state is a
point in an infinite dimensional simplex, the set of probability measures on [0, 1]
endowed with the usual weak-star topology. It is more convenient to represent the
state at time ¢ by a probability density p(x,t) on A (including improper densities
known as Dirac delta functions), or equivalently by a cumulative distribution
function D(z,t) = [ p(y,t)dy, for x € [0,1].

In this setting, a player’s fitness ¢(x, D) depends on her chosen action x € [0, 1]
and the current state, the entire distribution D of other players’ actions.” The
graph of the fitness function, holding constant the current state D, defines a
fitness landscape.® The player adjusts the choice = to reach a higher point on
the landscape. However, as all players adjust, the distribution D changes and the
landscape morphs. Players then respond to the new landscape, further changing
the distribution. This interplay between fitness landscape and distribution can
lead to nontrivial dynamics.

The rest of this section assumes that players’ adjustment speed is propor-
tional to the fitness gradient, ¢, = 0¢/0x. Proposition 1 of FY97 shows that
such adjustment results from quadratic adjustment costs. The other propositions
in FY97 show that the main qualitative results require only that adjustment is
in the same direction as the gradient, i.e., uphill in the fitness landscape. The
main substantive restriction is that adjustment doesn’t involve a player jumping
instantaneously from current action x to a distant action y. This restriction re-
flects Darwin’s dictum Natura non facit saltum (also favored by the economist
Alfred Marshall). The restriction is violated by direct generalizations of replica-
tor dynamics and other standard dynamics on finite action spaces, because these
generalizations don’t respect the ordering of the action set A = [0, 1].

Dynamics in a gradient adjustment system can be characterized by a popula-
tion mass conservation law: the rate of change in population mass to the left of
any point x is equal to the (negative of the rightward) flux past that point. The
flux is the product of the density p = D, and the velocity given by the gradient
¢z, so we have the equation

"The dependence on the distribution D can take many forms. In some applications ¢ depends
on a statistic of D such as the mean or variance or an order statistic. Below I describe an
economic application where ¢ depends on the local value, D(z).

8The landscape metaphor goes back to Sewall Wright (e.g., 1949) and has been revived
by Stuart Kaufman (e.g., 1993). Wright considered low dimensional continuous landscapes and
Kaufman considers high dimensional sequence spaces of discrete-valued traits. Neither considers
dynamically changing (i.e., distribution dependent) landscapes as we do here.
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Di(x,t) = —u(x, D)Dy(x, ), (7.1)

which holds at all points x € (0,1) where the current distribution is continu-
ous. To preserve population mass in the interval [0,1], we impose the condition
¢z(1,t) < 0 at x = 1, and ¢,(0,¢) > 0 at = 0. Discontinuities in the distri-
bution, or ”clumps,” are especially interesting because they represent a positive
fraction of the population choosing precisely the same action. The next section
illustrates how such discontinuities arise and how to work with them.

Gradient dynamics on distributions have potential applications in biology
(e.g., evolution of continuous traits such as beak size, as in Eshel, 1983), political
science (evolution of party or candidate positions in issue space, as in Kolman
et al, 2000) and economics (e.g., location of firms in characteristic space, as in
Sonnenschein, 1982) as well as in physics (e.g., Lam, 1997). In such applications,
the modeler constructs a fitness function (and an initial distribution) from the
data, and asks whether the landscape and distribution settle down to a steady
state. If so, one asks whether the steady state is a continuous distribution (so
heterogeneous choices persist) or a degenerate single point distribution (every-
one makes the same choice in long run equilibrium) or some other distribution.”
Transient dynamics are sometimes of even greater interest.

8. Consumption Dynamics

It’s time for an illustrative example of a landscape model. A Veblen consump-
tion model is a good choice for three reasons. It cleanly illustrates a nontrivial
fitness function that leads to interesting transitory states and simple but varied
asymptotic states. Second, it features rank dependent fitness, which may be an
important aspect of financial markets. Third, it has been worked out in recent
work by Friedman and Yellin (2000, denoted FY00 below).

Perhaps taking a cue from Rae (1834), Veblen (1899) popularized the idea
that some goods and services (think of yachts, or even cars and homes) are con-
sumed largely to gain status, a theme pursued more recently by authors such
as Duesenberry (1949), Frank (1985) and Ljundqvist and Uhlig (2000). Such
consumption has the desired effect only to the extent that it exceeds the con-

9For example, the Bell et al version of the El Farol game features a noisy version of gra-
dient dynamics. The long run steady state is a unique degenerate two-point distribution with
population mass 0.6 on the point £ = 1 and mass 0.4 on x = 0.
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spicuous consumption of other people, i.e., its utility is rank-dependent.'® Frank
emphasizes the point that conspicuous consumption has a nonpecuniary negative
externality: increasing my own rank decreases the rank of the people I pass.

The evolutionary model here is single population, with action x € [0, 1] repre-
senting the fraction of income an individual allocates to ordinary consumption, so
1 — z is allocated to rank dependent consumption. We assume that an individual
receives direct utility clnz from ordinary consumption x,where the parameter
¢ > 0 represents the importance of ordinary consumption relative to conspicuous.
We specify rank dependent preferences driven by envy, so an individual choosing
the fraction of rank dependent consumption 1 — x when everyone else chooses
1 — y receives disutility proportional to the amount by which 1 —y exceeds 1 — ,
viz.

If others’ choices of ordinary consumption y are distributed according to the

cumulative distribution function D(y), then from (8.1) the rank dependent utility
component is

1 x T
/0 rE(w,y)dD(y)=/0 (y—x)dD(y)=—/0 D(y)dy, (8.2)

and the total payoff (i.e., the fitness function) is
¢¥(x, D) = clnz — / D(y)dy. (8.3)
0

Dynamics are governed by the gradient ¢ = c/z — D(z).

Alternatively, one could specify rank dependent preferences driven by pride,
the degree to which own conspicuous consumption exceeds that of others. Here
the pairwise kernel is

rp(z,y) = max{0, (1 —z) — (1 —y)} = max{0,y — =}, (8.4)

the rank dependent component given choice distribution D(y) is

Why might people have a rank dependent preference component? High rank signals pros-
perity, which may be profitable to some people (think of lawyers and brokers). Perhaps the
preference is innate and part of our evolved psychology. E.g., in Barkow, Cosmides and Tooby
(1992) one finds the argument that status seeking was adaptive for our ancestors because higher
status brought better access to valuable resources. We won’t pursue such arguments here but will
simply take as given a taste for conspicuous consumption, and explore the dynamic consequences.

13



1 1 x
/0 rp(z,y)dD(y) = / (y — 2)AD(y) = (&) - /0 1- D)y,  (85)

and the overall payoff function is

T

6P (2,D) = clnz + (x) —/ 1 — D(y)ldy, (8.6)
0

where (x) = fol xdD(z) is the population-mean choice. The gradient of the pride
payoff is the same as the envy payoff gradient from with the distribution D(z)
replaced by the survival function 1—D(x). If both pride and envy are present, then
straightforward calculations disclose that the mixed gradient is a renormalization
of the stronger component, e.g., of ¢Z if pride has weight a and envy has weight
bel0,a).

Inserting the Envy gradient d)f (z,D) = ¢/x — D(x) in the Master Equation
(7.1), we obtain the partial differential equation

Dy = D,[D — (¢/x)]. (8.7)

Theorem 1 of FY00 shows that given any initial distribution D(z,0) = F(x),
the distribution converges monotonically under (8.7) to a degenerate steady state
distribution with everyone choosing the same action z , the solution to zF(x) =
c.'! The intuition is captured in the following example. Assume a uniform initial
distribution F(z) = D(x,0) = x. Then ¥ = /c solves the equation zF(z) = ¢
(or ¢E(x, F) = 0). At t =0 in equation (8.7), we see that D; < 0 at points x <
x, and Dy > 0 at points x > Z. The slope D, increases at x = x, but the value
D(z,t) remains unchanged because no mass passes through z. Hence the zero of
the gradient remains at = 7, and this point is an attractor toward which mass
flows from both directions. Eventually the entire population clusters at x = z.
In contrast to Envy, under the Pride specification there is a specific dis-
persed long run equilibrium that is independent of initial condition. Note that
the gradient ¢ = ¢/x — 1 + D(x,t) > 0 for < ¢, so in long run equilib-
rium we have D*(x) = 0 for « € [0,¢). The boundary sign restriction allows a
mass point at x = 1. All remaining mass must reside at points = € [c, 1) such
that ¢Z (z, D*) = 0, i.e., D*(z) = 1 — ¢/z. Thus for 0 < ¢ < 1, the asymp-
totic distribution D*(z) follows the hyperbolic arc 1 — ¢/x inside the unit square
0 < x,D* < 1. The asymptotic distribution follows the lower edge D*(z) = 0

1Tf the initial distribution has a mass point and no such solution exists, then one uses the
more general characterization = sup{z € [0,1] : F(z) < c}.
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(upper edge D*(z) = 1) when the arc is below (above) the square. Thus all
consumers end up on the same indifference curve given by the hyperbolic arc
D*(z) = 1 —¢/x. On this indifference curve the marginal gain 1 — D*(z) from
increasing rank dependent consumption is exactly offset by the corresponding
marginal cost —c¢/x of reducing ordinary consumption. The payoff function is
constant and maximal along the arc and at the upper endpoint x = 1, but takes
lower values clog x — x in the unpopulated zone [0, ¢).

What can be said about transient dynamics? The non-linear Envy equation
(8.7) can be regarded as an integrable family of ordinary differential equations
(ODEs) linked by the initial condition D(z,0) = F'(x) . To characterize solutions,
it is useful to define an auxiliary variable z = z(x, t) implicitly given by D(x,t) =
F(z). The Appendix in FY00 shows that (8.7) can be integrated to obtain the
general implicit solution

z-x c 1 lc — zF(z)]
=T PR <\c—asF<z>|)' (8:8)

For initial conditions F' and parameter values ¢ that allow (8.8) to be rewritten
uniquely in the form z = z*(z,t) for each x € [0,1] and ¢ > 0, the PDE has a
unique and continuous solution D(x,t) = F(z). On the other hand, if z*(z,t)
is multiple valued for some (z,t) then the solution incorporates a shock wave as
explained below.

To fix ideas, we find the explicit solutions for the pure conspicuous consump-
tion case ¢ = 0. Given a uniform initial distribution D(z,0) = z, (8.8) gives

X

z = 7%. Hence, using the Heaviside notation ©(x) = 0 for < 0 and = 1 for

x > 0, the solution is

D(x,t)zlit@(l—t—x), 0<t<l, (8.9)
with associated density

o, 1) :%t@(ptﬂ), 0<t<1. (8.10)
The solution says that during the time interval 0 < ¢ < 1 households decrease their
consumption of ordinary goods and increase rank dependent consumption so as
to maintain a uniform distribution in = on the (shrinking) interval 0 < z <1 —t.
At ¢t = 1 the time paths for all households cross, and all consumers cluster in
a delta-function singularity at x = 0. Conservation of probability mass in the
unit interval and gradient adjustment imply there is no further change in the
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distribution for ¢ > 1; every household continues to devote all resources to rank
dependent consumption, not surprisingly since ordinary consumption has no value
when ¢ = 0.

Things become interesting even in the ¢ = 0 case when the initial distribution
has an interior mode. For example, take F(z) = 322 — 222 so the initial density
f(x) = 62(1 —x) is unimodal and symmetric about = = 1/2. The general solution
(8.8) yields the cubic expression —2tz3 + 3tz2 — z + 2 = 0. The solution becomes
multiple valued when z, becomes infinite, i.e., at a time ¢* such the characteristics
(indexed by z) pile up at some point z*. Taking the derivative of the cubic
expression with respect to x we find z,(6tz — 6tz> — 1) +1 = 0. Of course at
t = 0 we have z;, = 1 and for a short period of time z, remains finite because
the expression in parenthesis remains positive. But at ¢* = 2/3 the expression in
parenthesis has the real root z* = 1/2, and hence the solution has a singularity.
Plugging z* and t* into the cubic expression and solving for x we see that the
singularity emerges at choice * = 1/6.

Some intuitive remarks may be in order before proceeding. The initial distrib-
ution is steepest at the density’s mode x = 1/2; the consumer indexed by z = 1/2
decreases x more rapidly than households with initially lower x and begins to
overtake them at time t* = 2/3 and ordinary consumption level z* = 1/6. Given
our assumption of identical underlying preferences, this consumer can’t actually
pass his rivals because his behavior is identical to theirs once he attains the same
consumption level. Instead, he clumps together with them, and the clump grows
as it overtakes consumers with lower z indexes and is overtaken by those with
higher z. Thus, beginning at t* we get a growing, moving mass of consumers
with identical consumption patterns, a homogeneous middle class. To calculate
its position s(¢) and mass M (t) for ¢t > t* = 2/3, one uses shock wave techniques
developed in fluid mechanics.

Use the auxiliary variable z to keep track of the leading and trailing edges,
z1,(t) and zg (t),of the clump or middle class, whose mass thusis M(t) = F(zg )—
F(zr ). Three equations (called the Rankine-Hugoniot conditions) in the three
variables zy, zr and s characterize the desired quantities. The first two equations
apply the general solution (8.8), here simply the cubic expression above) to zz, and
zR, at position x = s(t). The third equation integrates the conservation of mass
equation (8.7) across the shock and takes the limit as the upper and lower limits
of integration converge to s(t). The result is —M (t)ds/dt = (F?(zg) — F?(z1))/2,
which simplifies to ds/dt = —4(F(zg) + F(21)) = —%. The last equality follows
from F(zg) + F(z) = 1, using the symmetry of the initial distribution around
z* =1/2. Recall that s(2/3) = 1/6, so for t* <t <1 the shock position must be

s(t) = (1 —t)/2.
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(zr —x)/t. Write
. Again using the

The first equation (8.8) can be written in the form F'(zg
zR=3+atoget F(3+a)=[4+a— (1-1t)/2/t =3+
symmetry of F', write z;, = % — a and obtain F(% —a) = 5 — %. Subtracting
the second equation from the first, obtain M(t) = F(% +a) — F(% —a) = 27‘1
Substituting F(z) = 322 — 223, straightforward algebra reveals that the shock

mass is M(t) = ,/t% - t% , valid for t* < ¢ < 1. Thus the middle class absorbs the
entire population by the time it hits the boundary x = 0 at time ¢t = 1. Again,
everyone continues to neglect ordinary consumption after ¢ = 1. See Figure 2.
FYO00 shows that dynamics are qualitatively similar in more complex situa-
tions. When the consumption parameter ¢ > 0, the shock velocity decreases as
the position approaches T, and nice closed form solutions are unavailable when
the initial distribution is asymmetric. However, theorem 2 in FY00 shows that
a moving interior shock will appear in finite time for any smooth initial density
function if ¢ > 0 is sufficiently small. More generally, a compressive shock appar-

o+ ||



9. Discussion

Evolutionary games provide a broad framework for models of interaction over
time. Equilibrium emerges (or fails to emerge) in real time as players/traders ad-
just their actions in response to the payoffs they earn. In a financial market model,
the payoffs depend on the prices (or returns) resulting from all traders’ actions
as well as on own action choice. The adjustment dynamics can produce standard
homogeneous equilibria in which all traders of the same type choose the same
optimal action, or dispersed heterogeneous equilibria. Even in the homogeneous
case, the dynamics can be interesting, involving travelling clumps corresponding
to shock waves in fluid mechanics.

New models of asset price bubbles might be constructed using these tools.
Consider a single population of portfolio managers whose compensation depends
on performance rank. Each manager chooses a single ordered variable, the port-
folio risk measured (say) by beta, the normalized covariance of own return with
the overall market return. One would write out how asset returns depend on
the distribution of choices, and how managers’ payoff depends on their realized
returns (given own portfolio choice and the vector of asset returns) relative to
the returns realized by other managers. I conjecture that such a model will have
some phases where equilibrium (e.g., the Capital Asset Pricing Model) is quite
descriptive and other phases (e.g., a crash phase where managers scramble to
lower portfolio risk) where the dynamics are better described by shock waves.

A parting thought. Equilibrium theorists rightly point out that good the-
oretical models should conform to basic theoretical principles as well as to the
empirical facts. Some theoretical discipline is needed to replace the standard as-
sumptions of optimality and equilibrium. Evolutionary models include just such
a discipline: evolvability. In a financial market model one asks, e.g., can sta-
tistical arbitrageurs invade? With this discipline in mind I am optimistic that
evolutionary models have a bright future in finance.

10. Bibliography

Anderson, S.P., Goeree, J.K. and C.A. Holt (1998) Rent seeking with
bounded rationality: an analysis of the all-pay auction. Journal
of Political Economy. 106(4): 828-853.

Arthur, W.B. (1989) A Nash-Discovering Classifier System for Finite-
Action Games. manuscript. Santa Fe Institute.

18



Arthur, W.B. (1994) Inductive Reasoning and Bounded Rationality:
The “El Farol” Problem. American Economic Review: American

Economic Association Papers and Proceedings. 84 (May): 406-
411.

Arthur, B., Ermol’ev, Y. and Y. Kanioskii (1983) A Generalized Urn
Problem and Applications. Cybernetica. 19: 61-71.

Arrow, K. and F. Hahn (1971) General Competitive Analysis. Holden-
Day, San Francisco.

Barkow, J., Cosmides, L. and J. Tooby (1992) The Adapted Mind:
Evolutionary Psychology and the Generation of Culture. Oxford
University Press, New York.

Basov, S. (1999) Social Learning and Stochastic Decision Making.
preliminary draft manuscript. Boston University.

Bell, A.M., Sethares, W.A. and J.A. Bucklew (1999) Coordination
Failure as a Source of Congestion in Information Networks. man-
uscript NASA Ames Research Center.

Benaim, M. and M. Hirsch (1999) Learning Processes, Mixed Equi-
libria and Dynamical Systems Arising from Fictitious Play in Per-
turbed Games. Games and FEconomic Behavior. 29: 36-72.

Blume, L. and D. Easley (1992) Wealth Dynamics and the Market
Selection Hypthesis, Journal of Economic Theory, 58(1): 9-41.

Camerer, C. (1999) Behavioral Game Theory. Draft Book Manuscript.
Caltech Division of HSS.

Cason, T.N. and D. Friedman (1999) Learning in a Laboratory Mar-
ket with Random Supply and Demand. Ezperimental Economics.
2: T7-98.

19



Challet, D., and Y.-C. Zhang (1997) On the Minority Game: Analyt-
ical and Numerical Studies. Physica A. 256: 514-532.

Chen, H.C., Friedman, J.W. and J.F. Thisse (1997) Boundedly Ratio-
nal Nash Equilibrium: A Probabilistic Choice Approach. Games
and Economic Behavior. 18(1): 32-54.

Cheung Y.W. and D. Friedman (1997) Individual Learning in Games:
Some Laboratory Results. Games and Economic Behavior. (April)
19(1): 46-76.

Conlisk, J. (1980) Costly Optimizers versus Cheap Imitators. Journal
of Economic Behavior and Organization. 1: 275-293.

Cornell, B. and R. Roll (1981) Strategies for Pairwise Competitions
in Markets and Organizations. Bell Journal. 12: 201-213.

Cressman, R. (1992) The Stability Concept of EvolutionaryGame The-
ory : A Dynamic Approach. Springer-Verlag, Berlin; New York.

Cressman, R. (1995) Evolutionary Game Theory with Two Groups of
Individuals. Games and Economic Behavior. 11: 237-253.

Duesenberry, J. (1949). Income, Saving, and the Theory of Consumer
Behavior. Harvard University Press, Cambridge.

Ellison, G. (1993) Learning, Local Interaction and Coordination, Econo-
metrica 61(5): 1047-1071.

Eshel, 1. (1983) Evolutionary and Continuous Stability. Journal of
Theoretical Biology. 103: 99-111.

Frank, Robert H. (1985) Choosing the Right Pond. Oxford University
Press, New York.

20



Friedman, D. (1991) Evolutionary Games in Economics. Economet-
rica. 59: 637-666.

Friedman, D (1998) On Economic Applications of Evolutionary Game
Theory. Journal of Evolutionary Economics. 8(1): 15-43.

Friedman, D. and J. Ostroy (1995) Competitivity in Auction Markets:
An Experimental and Theoretical Investigation. The FEconomic
Journal. 105 (January): 22-53.

Friedman, D. and J. Yellin (1997) Evolving Landscapes for Population
Games. draft manuscript. University of California, Santa Cruz.

Friedman, D. and J. Yellin (2000) Dynamics of Conspicuous Con-
sumption. draft manuscript. University of California, Santa Cruz.

Fudenberg, D. and D.K. Levine (1998) The Theory of Learning in
Games. MIT Press, Cambridge MA

Hirshleifer J. and J.G. Riley (1994) The Analytics of Uncertainty and
Information. Cambridge University Press, Cambridge.

Hofbauer, J. and K. Sigmund (1988) The Theory of Evolution and
Dynamical Systems. Cambridge University Press, Cambridge.

Kandori, M., Mailath, G.J. and R. Rob (1993) Learning, Mutation,
and Long Run Equilibria in Games, Econometrica. 61(1), 29-56.

Kaufman, Stuart A.(1993) The Origins of Order: Self-Organization
and Selection in Evolution. Oxford University Press, New York.

Kivinen, J. and M. Warmuth (1995) Additive versus Exponential Gra-
dient Updates for Linear Prediction. Proceedings of the 27th An-

nual ACM Sumposium on Theory of Computing. ACM Press, New
York; 209-218.

21



Kollman K., Miller, J. and S.E. Page (2000) Political Institutions and
Sorting in a Tiebout Model. American Economic Review (forth-
coming)

Lam, Lui (1997) Introduction to Nonlinear Physics (esp Chapter 15).
Springer, New York.

Ljungqvist, L. and H. Uhlig (2000) Tax Policy and Aggregate Demand
Management Under Catching Up with the Joneses. American Eco-
nomic Review. 90(3) (June): 356-366.

Marcet, A. and T. Sargent (1989) Convergence of Least Squares Learn-
ing Mechanisms in Self-Referential Linear Stochastic Models. Jour-
nal of Economic Theory 48: 337-368.

Maynard Smith, J. (1982) Evolution and the Theory of Games. Cam-
bridge University Press, Cambridge.

Maynard Smith, J. and G. Price (1973). The Logic of Animal Con-
flict. Nature. 246: 15-18.

McKelvey, R.D. and T.R. Palfrey (1995) Quantal Response Equilibria
for Normal Form Games. Games and Economic Behavior.10(1):
6-38.

Nelson, R. and S. Winter (1982) An Fvolutionary Theory of Economic
Change. Harvard University Press, Cambridge MA.

North, D.C. (1990) Institutions, Institutional Change, and Economic
Performance. Cambridge University Press, Cambridge ; New York.

Rae, John, 1834. Statement of Some New Principles on the Subject
of Political Economy. Hilliard Gray and Company, Boston.

Rustichini, A., Satterthwaite, M. and S.Williams (1994) Convergence
to Efficiency in a Simple Market with Incomplete Information.

22



Econometrica. 62: 1041-1063.

Samuelson, L. (1997) Evolutionary Games and Equilibrium Selection.
MIT Press. Cambridge, Mass.; London.

Samuelson, L. and J. Zhang (1992) Evolutionary Stability in Asym-
metric Games. Journal of Economic Theory. 57(2): 363-391.

Selten, R. (1991) Evolution, Learning and Economic Behavior. Games
and Economic Behavior. 3: 3-24.

Shubik, Martin (1982) Game Theory in the Social Sciences: Concepts
and Solutions. MIT Press. Cambridge, Mass.; London.

Sonnenschein, H. (1982) Price Dynamics Based on the Adjustment of
Firms. American Economic Review. 72(5): 1088-1096

Stahl, D.O. (1999) Evidence-Based Rule Learning in Symmetric Nor-
mal Form Games. International Journal of Game Theory. 28:
111-130

Taylor, P.D. and L.B. Jonker (1978) Evolutionary Stable Strategies
and Game Dynamics. Mathematical Biosciences. 40: 145-156.

Veblen, Thorstein (1899) The Theory of the Leisure Class. MacMillan
Co., London.

Vega-Redondo, F. (1996) Evolution, Games and Economic Behavior.
Oxford University Press, New York.

Weibull, J. (1995) Evolutionary Game Theory, MIT Press, Cambridge
MA.

Wright, Sewall (1949) Adaptation and Selection. (L. Jepsen, G.G.
Simpson, and E. Mayr eds.) Genetics, Paleontology, and Evolu-

23



tion. Princeton University Press. Princeton, N.J.

Young, P. (1993) The Evolution of Conventions. Econometrica. 61(1):
57-84.

24



Bid

Bid=Risk Neutra BNE




D(x)

0.9

0.8

0.7

0.6

0.4

0.3

0.2

0.1

D*(x)

D(x,0)

Figure 2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9



