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Abstract

We consider population games where the possible actions of each player are labeled
by a real number that ranges over a finite interval. The adjustment dynamics of such
games can be visualized as motion over a “landscape” - the surface defined by a pay-
off or fitness function. A leading example is gradient dynamics, in which the speed
with which a player changes action is proportional to the gradient (or slope) of the
landscape at his current action. We show that gradient dynamics arise from individual
optimizations, given the costs of changing actions. We also show that the time behav-
ior of the action distribution in gradient dynamics is described by a class of nonlinear
integro-partial differential equations with deviating spatial arguments. We solve these
equations analytically for some interesting choices of payoff functions. Cases are ex-
hibited in which the distribution of actions develops compression and rarefaction shock
waves. The results of numerical simulations are presented. We characterize the limiting
probability distributions of classes of population games, and find sufficient conditions
for convergence to pure Nash equilibrium and for convergence to distributions with full
support. Applications are suggested in economics and population biology.

1 Introduction

Virtually all the existing work on the adjustment dynamics of population games deals with
choice from a finite unordered set A of alternative strategies or actions.1 We propose a

∗Economics Department, University of California, Santa Cruz, CA, 95064. dan@cash.ucsc.edu
†Division of Natural Sciences, University of California, Santa Cruz CA 95064. yellin@cse.ucsc.edu
‡We thank Jamie Wylde for research assistance. We thank Peter Abrams, Ilan Eshel, Richard Mont-

gomery, Tom Nagylaki, Robert Rosenthal, and Carl Simon for helpful comments. This paper benefited from
discussion at the Stanford Biological Sciences Seminar, the Non-linear Dynamics Seminar at University of
California, Santa Cruz, and the Stony Brook Game Theory Workshop, Summer 1996.

1The literature on the dynamics of population games has grown rapidly in the last fifteen years, first in
biology [MS82], [EA83], [TJ78], [HS88], and more recently in economics and game theory [Bin87], [FK88];
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theory of evolution processes for strategically interacting populations when the action set A
has an ordering or topology. The action space population distribution plays the role of state
variable, and we study its evolution over time. We assume that individuals adjust with finite
velocity, changing actions to nearby actions only. Given this local adjustment path (LAP)
restriction, the rate of change of actions is governed by a velocity field on the action space.
The existence of a velocity field allows us to write down a master nonlinear integro-partial
differential equation for the population distribution. We discuss the properties of the master
equation below, giving analytic and numerical solutions for illustrative special cases.

The study of population games under LAP dynamics raises basic questions: What is the
relation between the static equilibria of a population game — Nash equilibria (NE) and
evolutionarily stable strategies (ESS) — and states that are invariant under adjustment
dynamics? Under what conditions does an evolving state converge over time to an invariant
distribution, rather than fluctuating chaotically or cycling? Under what conditions does
a state converge on, or move away from, extreme behavior at the boundaries of action
space? More generally, under what conditions does clumping, in which subgroups or an
entire population choose the same action, develop or disperse?

We address these questions here, exploiting a geometric representation of population games
on the unit interval A = [0, 1]. We interpret such games as taking place on landscapes with
peaks and valleys that pose dynamic obstacles and coevolve with the distribution of actions.2

At any time, the landscape has a shape determined by the rules of the game and by the
contemporary state of the population. Hence the landscape is integral to a feedback system.
The shape of the current landscape induces players to adjust their actions and hence alters
the action distribution or state. But altering the current state induces deformations in the
landscape and so induces further changes in both the state variable and the landscape.

That states of population games develop from mutual interactions between players and
landscape is analogous to the notion that organisms arise and evolve from the unique mutual
interactions of genotype and environment [Lew92]. In the discussion to follow, we explore
the interplay between the current state and the current landscape, and their evolution over
time.

Special cases of LAP dynamics appear in a number of physical and biological contexts. For
example, the laws of fluid dynamics also play out on landscapes and incorporate the LAP
restriction of no discontinuous jumps in location. But disturbances in fluids propagate at
finite speed, so that behavior at distant points has no immediate local impact.3 In population
biology, standard dynamical models are less restrictive. They allow action at a distance in

see [Mai92] and [Cra95] for surveys and [Wei95] and [FL95] for texts.
2The landscape metaphor is due to Sewall Wright, e.g. [Wri49]; see [Kau93] for a recent overview.

Landscapes considered in population biology are defined on time-invariant sequence spaces of very high
dimension, while the landscapes studied here are time-varying and defined on a low-dimensional action space.
Simulations in low-dimensional spaces are also in use in studies of political dynamics [Lom97], [KMP96].

3The laws of fluid dynamics have particular relevance here. It will be shown that the probability mass
comprising the action distribution behaves as an inviscid fluid.
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trait space, though only via the population average. Evolutionary game theory takes yet
another approach. It allows the entire distribution of actions or traits to matter locally,
but only as it affects the expectation of an underlying two-player (or simple normal form)
payoff function. Our LAP framework synthesizes concepts from these separate literatures.
It provides a natural approach to the competitive dynamics of populations, extending the
game theoretic approach to allow for more general payoff functions and action distributions,
while relaxing the topological restrictions in fluid dynamics and generalizing the dynamical
averaging processes used in population biology.

This article is organized as follows. In Section 2 we define population games as an ex-
tension of normal form two-player games. We contrast pairwise payoff functions with the
distributed payoff functions of general population games. In Section 3 we analyze gradient
dynamics on the discrete grid A = {0, 1/N, 2/N, ..., 1} ⊂ [0, 1] when the distributed payoff
function is derived from a pairwise payoff function of a symmetric two-player game. We
solve explicitly for the action distribution in a fundamental case. The solution exhibits a
moving discontinuity analogous to a shock front in fluid dynamics. The discrete formulation
also provides an algorithm for numerical solutions of our models. Section 4 develops the
geometry of landscapes as a metaphor for a strategically interacting population. Section 5
presents adjustment processes formally, emphasizing gradient processes and a generalization
we call sign-preserving dynamics. We derive the gradient process as the optimal response to
quadratic adjustment cost, extending results previously obtained by [Son82]. We solve some
salient examples analytically and numerically.

The nature of invariant distributions is explored in Section 6. We generalize the equal ex-
pected payoff property of mixed Nash Equilibria in standard games. We also generalize
the Bishop-Cannings Theorem [MS82] to continuous action spaces. After adapting standard
static and dynamic definitions of equilibrium to our setting, we characterize the invariant dis-
tributions of all generalized gradient processes, both clumped and dispersed. In Section 7, we
consider generalized gradient processes and find sufficient conditions for the population mean
payoff to increase over time, and for asymptotic convergence to an invariant distribution.
Section 8 examines transient behavior and gives fully solved examples of compression shock
fronts in the probability density of actions. Section 9 explores dispersed behavior, using
as illustration the classic centered expansion wave or “fan.” Section 10 describes clump-
ing of actions. We find sufficient conditions for convergence to dispersed and to clumped
distributions and point out connections to existing equilibrium results in game theory and
population biology.

Section 11 applies our results to several well studied models in biology and economics, in-
cluding Cournot duopoly, the war of attrition [MS82] and the Edgeworth cycle, the [Son82]
model of spatial competition, and continuous biological traits. In these applications, we
present a dynamic picture that complements standard static results. The paper concludes in
Section 12 with a brief discussion of open questions and possibilities for further applications.
Our notation, derivations, and proofs are collected in an Appendix.
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2 Population Games

The dynamics of population games are determined by the interplay of two mathematical ob-
jects: an action distribution D (or density ρ) and a distributed payoff function φ or pairwise
payoff function g. We define these terms here for the simplest relevant case: a single large
population of players interacting symmetrically. We leave for future work generalizations
to games in which there are strategically distinct subpopulations, e.g., buyers and sellers or
males and females.

Except when otherwise stated, we take the action set to be the continuous unit interval
A = [0, 1]. Action distributions are probability measures on the action set. We represent
a measure by its cumulative distribution function D or by its density ρ. A cumulative
distribution function on A = [0, 1] is a non-decreasing right-continuous function D : R→ R
such that D(x) = 0 for x ≤ 0 and D(x) = 1 for x ≥ 1. The associated density ρ = Dx,
provided the derivative Dx exists everywhere in A.

�Let D denote the set of all distributions on [0, 1]. The distributed payoff function φ :
[0, 1] × D → R assigns the payoff φ(x, D) to any player choosing x, given that D describes
the distribution of other players’ actions.

We assume the player population is so large that the decisions of a single player have no sig-
nificant effect on the current action distribution. Hence, we use the same action distribution
D in the distributed payoff function for all players.

�Let g(x, y) be the pairwise payoff function for an arbitrary, symmetric two-player normal
form game on the square. Then g(x, y) is a measurable real-valued function on [0, 1]× [0, 1]
that represents the payoff for choosing action x when the opponent has chosen action y.

An important class of distributed payoff functions are derivable from pairwise payoff functions
as follows. Suppose players in a population game associated with a pairwise payoff function
g(x, y) are “randomly matched” in pairs and have the current action distribution D. Then

the expected payoff to a player choosing action x is φ(x, D) = EDg :=
∫ 1

0
g(x, y)dD(y). If

the density ρ exists, we write φ(x, D) =
∫ 1

0
g(x, y)ρ(y)dy.

3 Discrete Gradient Dynamics

We illustrate population games and introduce our dynamical rules by considering a popula-
tion game played out in continuous time on an ordered, discrete action space. The dynamics
are governed by a finite system that describes the population flow — or the flow of proba-
bility mass — among neighboring points on a one-dimensional lattice labeled i = 0, 1, ...n.
Each lattice point represents a possible action. Let the array ((gki)) be the pairwise payoff
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for choosing action k when the opponent has chosen i. Let ρk = Nk/N be the fraction of
players choosing action k. Our interest here is in an associated population game played by
a large number of individuals N .

In the population game, the distributed payoff to action k is the expectation

φk =
∑

i

gkiρi (1)

of the pairwise payoff. We make the dynamical assumption that probability mass flows only
between neighboring points. In particular, we implement the following rule:

Master Rule. All flows from point k to the neighboring points k ± 1 only take place if
they are “uphill” in terms of the distributed payoff. That is, mass flows from point k to point
k − 1 if and only if the first difference Xk ≡ φk−1 − φk is positive; mass flows from k − 1 to
k if Xk is negative. When flow does occur, it is proportional to the mass ρk at sourcepoint
k and to the payoff difference Xk.

The Master Rule embodies the conservation of probability in the form

d/dt (probability density) = − outgoing flow + incoming flow.

Formally, the population dynamics are then described by the real time (n + 1)-dimensional
discrete evolution system

dρ/dt= M(X) · ρ, (2)

where the evolution matrix is 4

M(X) =



X−
1 X+

1 0 0 0 0 0
−X−

1 −X+
1 + X−

2 ... ... ... 0 0
0 −X−

2 ... X+
k 0 0 ...

0 0 ... −X+
k + X−

k+1 ... 0 0
0 0 0 −X−

k+1 ... X+
n−1 0

0 ... 0 ... ... −X+
n−1 + X−

n X+
n

0 0 0 0 0 −X−
n −X+

n


(3)

Continuum limit. In the limit of a continuous action space, (1) becomes the integral relation

φ(x, t) =
∫ 1

0
g(x, y)ρ(y, t)dy. We restrict discussion here to discrete evolution equations that

have measurable terms in the continuous limit. Thus the quantities Xi in (2) are restricted
to a monotone sequence, except possibly at isolated points, and one can write the right-hand
side of (2) as a double difference. Explicit calculation of the secular determinant |M− λI|
shows that the tridiagonal matrix (3) has instantaneous negative eigenvalues, hinting at
convergence properties we shall discuss below in Section 7. In the continuous limit (2)
becomes

ρt(x, t) = −[ρ(x, t)φx(x, t)]x. (4)

4In (3), x+ = max{0, x},and x− = min{0, x}.
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Equation (4) plays a central role in the analysis presented in later sections.

The system (2,3) defines a nonlinear discrete Markov process in which flows switch directions
at dynamically determined times. The associated evolution equations in general have no
analytic solutions. Throughout this article, we therefore refer to numerical solutions based
upon (2,3). Our numerical calculations proceed via the usual Euler discretization, taking an
initial ρi(0) such that

∑
i ρi(0) = 1, ρi(0) ≥ 0, choosing a sufficiently small time step ∆, and

iterating (2) by replacing the left-hand side by the forward differences [ρi(t+∆)− ρi(t)]/∆ .

Example: Hierarchical action tower.

To set the stage for what follows, we now give an analytic solution of the discrete system (2,3)
for a simple special case. We choose a pairwise payoff that induces a permanent hierarchy
of actions (0, 1, 2, ...n) such that action k weakly dominates action k + 1:

g = −


1 0 0 0 0
1 1 0 0 0
... ... ... 0 0
... 1 ... 1 0
1 ... ... 1 1

 . (5)

The Appendix shows that given (5), equation (2) becomes the nonlinear system

·
ρ0 = ρ2

1, (6)
·
ρk = −ρ2

k + ρ2
k+1, k = 1, 2, 3, ..., n− 1,

·
ρn = −ρ2

n.

From (6) we observe that

n∑
k=p

·
ρk= −ρ2

p, p ≥ 1, (7)

so that for t →∞ all probability is “clumped” at action 0, with ρ0 = 1.

For the 3×3 case n = 2, we solve (6) explicitly in the Appendix. Figure 1shows the solution
for initial conditions (ρ0, ρ1, ρ2) = (.4, .06, .54). As anticipated, all probability ultimately
flows to the dominant action 0. In section 8 we solve for the continuous action density
ρ(x, t), given the continuous analog of (5), g(x, y) = θ(x− y).
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Figure 1: Time behavior of probability densities for three actions (0, 1, 2), given hierarchical
3x3 payoff matrix described in text.

4 Population Games and Landscapes

When the action set is continuous, payoff functions can be visualized as landscapes. The
topographic analogy leads to some geometric intuition. For concreteness, let g be a pairwise
payoff function defined on the action set [0, 1]. The graph of g is a surface over the unit
square [0, 1]× [0, 1]. A player A chooses an action that determines the east-west coordinate
x, while the opponent B chooses an action that determines the north-south coordinate y.
The altitude g(x, y) at the point (x, y) is player A’s payoff. A then has an incentive to move
east or west to reach higher ground.

Figure 2 exhibits the graph of a pairwise payoff function that we shall refer to as the “bundt.”5

If the opponent’s action is y = 0.2, then player A has an incentive to shift action toward
x = 0.5, the highest point on that slice of the bundt. But at the same time the opponent B
moves north or south seeking higher ground in his slice of the payoff function. If B moves
to y = 0.5, then A faces a different landscape slice and will move towards the bundt rim at
x= 0.25 or 0.75. But then B has an incentive to shift y again. We further analyze adjustment

5“Bundt” refers to the eponymous Viennese cake that is a favorite dessert of one of the authors. A payoff
function with the bundt form can be thought of as arising from a two-person game in which x and y represent
the distances from a fixed reference point that corresponds to zero use of a finite resource. The bundt shape
appears if the return is maximized at an intermediate level of resource use.
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Figure 2: Payoff landscape for pairwise bundt payoff function g(x, y) = 1024r4(1 −
r)exp(−512r4), where r2 = (x− .5)2 + (y − .5)2.

dynamics on the bundt in Section 5.4 below.

The landscape metaphor extends to a complete population of players. One may visual-
ize such a population as defining a distribution D (or a density ρ if the distribution is
smooth) on the north-south axis. Then the relevant landscape (or east-west profile) is the
distribution-weighted average of east-west profiles. For example, if the distribution in Figure
2 is concentrated with mass m at the point y = 0.2 and mass (1−m) at the point y = 0.5,
then the profile has three peaks at x = 0.25, 0.5 and 0.75 whose relative heights depend on
m.

When the distributed payoff function φ cannot be obtained from an underlying pairwise
payoff function g, the set of possible landscapes is a family indexed by D ∈ D. Whether
or not φ can be obtained from an underlying pairwise payoff function g, the relevant profile
evolves because D changes over time as individuals in the population mutually adjust their
behaviors.

Adjustment dynamics track the interplay over time between the payoff landscape φ(·, D) and
the distribution D. The landscape deforms as D changes, and D changes as players respond
to the current shape of the landscape. The dynamics are sensitive to precisely how players
respond to the landscape. Those responses depend on whether players can see the whole
east-west profile or just nearby portions, and on whether they are able to jump anywhere
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instantaneously or instead move east or west at finite velocity. In this paper we study the
finite velocity case in which players have limited vision and/or rate of adjustment.

Given the rule that each player must seek higher ground, the players will keep moving (and
the distribution and landscape will evolve) as long as some players can see higher ground.
In Nash equilibrium (NE) no player sees higher ground because, by definition, given an NE
distribution no higher ground exists for any player. Hence NE is a prime candidate for
describing the ultimate outcome of a population game.

Several types of NE are plausible outcomes of games of the type studied here. In a pure
NE all players choose the same action. A mixed NE has support on more than one action.
Some interesting mixed NE have distributions supported on infinitely many points, e.g. with
positive density on a continuous sub-interval. We refer to such distributions as dispersed.
We expect dispersed NE for payoff functions that penalize popular strategies, as in the
congestion games described below. We check this expectation after formalizing adjustment
processes and working through some examples.

5 Landscape Dynamics

Adjustment processes or dynamics describe how behavior in the population changes over
time. The most detailed specifications track the stochastic adjustment of a finite popula-
tion. In this paper we concern ourselves only with the distribution of actions and only with
deterministic processes.6

The dynamics of a population game then describe the time path or trajectory, T := {D(·, t) :
t ≥ 0}, of the action distribution in D as players seek better actions. In deference to Darwin’s
canon Natura non facit saltum, we will assume that change is smooth, and that the rate of
change is a function of the current state D and the strategic environment embodied in the
distributed payoff function φ. Hence a dynamic process in our setting is described by an
autonomous evolution equation of the general form

Dt(x, t) = Ψ(x, D, φ). (8)

5.1 Replicator and Best Response Dynamics

Dynamic adjustment described by (8) can occur for several reasons. For example, the player
population can change because of births and deaths. If so, and if payoffs represent re-
productive fitness, then the demographics are driven by natural selection. Ignoring the

6See [BS94] for a discussion of the senses in which deterministic processes for infinite populations are
limits of stochastic processes for finite populations.
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complications of sex and diploidy, the result is replicator dynamics [TJ78]. Under replicator
dynamics, the growth rate of probability mass at an action x is proportional to the deviation
of the distributed payoff φ(x, D) from the average payoff µD =

∫ 1

0
φ(y, D)ρ(y, t)dy. Hence,

in terms of the density function ρ(x, t) of the current distribution D, replicator dynamics
are given by the evolution equation7

ρt(x, t) = ρ(x, t)[φ(x, D)− µD], (9)

where we have absorbed the proportionality constant into the definition of time scale.

More important for many applications is the possibility that the players remain the same
but the action distribution changes as individuals change their actions, voluntarily or by
coercion. In particular, players may learn from their own experience or from observing other
players and adapt their behavior accordingly. Let

B(D) := {x ∈ [0, 1] : φ(x, D) ≥ φ(y, D)∀y ∈ [0, 1]} (10)

be the best response correspondence, and let β(x, D) be the fraction of B(D) at or below
x.8 Then inertial best response dynamics are described by the evolution process

Dt(x, t) = c[β(x, D(·, t))−D(x, t)]. (11)

The motivating idea for (11) is that in a time interval ∆t, a random O(∆t) fraction of
the population jumps to a best response while other agents’ actions remain unchanged. Of
course, if the jump fraction is not O(∆t) (e.g., if the rate constant c is infinite), the anti-
saltation canon is violated and we have “revolution not evolution.”9

5.2 LAP Dynamics

In this paper we focus on local adjustment path (LAP) dynamics in which Darwin’s canon
applies to every individual as well as to the population as a whole. Inertial best response
dynamics are not LAP. When an individual changes action it is always a jump to a best
response. Replicator dynamics are also not LAP. A few individual actions change drastically
when individuals are born who bear no relation to the newly deceased. Yet over a sufficiently
short time period most players do not change actions, and changes in the overall action

7See [Wei95] for a derivation of (9) for finite action spaces that generalizes to the present case of continuous
action spaces. See [To95] for an elegant formulation of (9) and an application to the evolution of risk
preferences.

8When B is a singleton x∗, i.e., the best response is unique, then β is simply 0 for x < x∗ and 1 for
x ≥ x∗. Various conventions for β are possible when the best response is not unique. These yield slight
variants on equation (11) below.

9See [WFCB96] for an application of a discrete time version of (11) to populations of motorists who
devote a fraction of their individual resources to accident prevention. See [Wei95] and [FL95] for treatments
of the finite action space versions.
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distribution are small. In LAP dynamics, by contrast, all players can change their actions
in a short period of time, but the individual changes are restricted to be small.

All dynamical population games incorporate a payoff function and current action distribu-
tion. LAP dynamics further require a velocity field v(x, t) that describes the adjustment of
a player choosing x at time t. Then the general equation (8) takes the form

Dt(x, t) = −v(x, t)Dx(x, t). (12)

The left hand side of (12) represents the time rate of change of probability mass in [0, x].
The right-hand side of (12) represents the rate at which probability mass moves left past a
point x, given the velocity field v. Equation (12) therefore states that probability mass is
conserved.

It is sometimes more convenient to write the evolution equation (12) entirely in terms of
densities. If D is differentiable in x, the expression Dx(x, t) is the density ρ(x, t). Taking
the derivative of (12) with respect to x thus yields

ρt(x, t) = −[v · ρ]x = −vx(x, t)ρ(x, t)− v(x, t)ρx(x, t), (13)

the well-known continuity equation for fluid flow. From another point of view, (13) is the
Fokker-Planck-Kolmogorov equation; see e.g. [MM95].

A natural way to connect the velocity field to the payoff function is to say that players move
towards higher payoffs, and that they move faster when the payoff rises more steeply. The
direct formalization of this idea, called gradient dynamics, is the continuous action space
version of the discrete dynamics described in Section 2. Gradient dynamics set v(x, t) =
φx(x, D(·, t)), so that the velocity field in (12) is equal to the payoff gradient. Note that the
basic evolution equation is then nonlinear in D (or ρ). In particular, if the distributed payoff
function φ comes from a pairwise payoff g, then the continuity equation is

ρt(x, t) = −[Egx · ρ]x = −
∫ 1

0

[ρ(x, t)gxx(x, y) + ρx(x, t)gx(x, y)]ρ(y, t)dy. (14)

A useful generalization of gradient dynamics is sign preserving, in that the velocity field at
a particular action always has the same sign (but not necessarily the same magnitude) as
the payoff gradient. Formally:

�LAP dynamics are sign preserving if there are constants K1, K2 > 0 such that for all
x and t, the velocity v(x, t) is in the closed interval with endpoints K1φx(x, ρ(·, t)) and
K2φx(x, ρ(·, t)).

This formal definition prevents v from approaching 0 or ∞ when φx is bounded away from
0 and bounded above.

The partial differential equations (12) and(13) are undefined when D is not differentiable or
v is discontinuous. In all cases we therefore assume probability mass acts as an inviscid fluid
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whose flow is characterized by a velocity field. Discontinuities in v can occur at end points
because in LAP dynamics we impose the boundary conditions

v(0, t) ≥ 0 and v(1, t) ≤ 0 for all t ≥ 0. (15)

The boundary conditions (15) prevent mass from exiting the interval [0, 1]. The condition
(12) prevents mass from entering [0, 1],because Dx = 0 outside [0, 1]. Probability mass in
[0, 1] is therefore conserved. In view of (15), gradient dynamics requires v(0, t) = φx(0, t)

+

and v(1, t) = φx(1, t)
−. For example, mass piles up at the endpoint 0 if (15) v(0, t) = 0 >

v(0+, t) := limx↓0 v(x, t) for some t > 0.

Technically and conceptually more difficult issues arise when the velocity field is discontinu-
ous at an interior mass point. We will see in Section 8 that for certain payoff functions and
initial conditions, probability conservation, as enforced by equations (12) and (13), results
in a one-dimensional discontinuity set called a shock wave. To insure that D(·, t) remains
a single-valued, cumulative distribution function, at such discontinuities we must look for a
generalized or “weak” solution to the partial differential equation and impose the Rankine-
Hugoniot conditions, e.g. ([Smo94], pp.245ff). To accommodate shock waves and to establish
convergence results, we endow the set D of distributions is with the weak-* topology. This
implies that the statement “D[n] converges to D ” is equivalent to the statement “for each
continuous function h on [0, 1] we have limn→∞

∫ 1

0
h(y)dD[n](y) =

∫ 1

0
h(y)dD(y).”

5.3 Adjustment Costs

The basic LAP restriction that players’ actions do not jump can be motivated in many ways.
Proposition 1 below shows that gradient dynamics emerge naturally when players respond
optimally to current circumstances and face adjustment costs that increase quadratically in
the adjustment speed.

We prepare for Proposition 1 with the following definitions.

�A player located at x(t) has adjustment speed |v(x, t)| = lim suph→0h
−1 | x(t + h)− x(t) |.

The velocity v(x, t) =
.
x when the time derivative

.
x exists.

�A player with payoff function φ(x, D) faces quadratic adjustment cost if for some constant
a > 0 his net payoff at time t is φ[x(t), D(·, t)]− a|v(x, t)|2 .

�Players are myopically rational if at each time t ∈ (0,∞) each player adjusts his current
action x(t) [at rate ẋ = v(x, t)] so as to maximize payoff net of adjustment cost over an
arbitrarily short time horizon ∆t.

Proposition 1 Myopically rational players facing quadratic adjustment costs choose adjust-
ment rates v(x, t) = cφx(x, t), where c > 0 is proportional to ∆t for x ∈ (0, 1) and satisfies
the boundary conditions (15) at the endpoints x = 0 and 1.
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Myopic rationality in population games generally coincides with full rationality, in which
players maximize the expected present value of the net payoff stream. This is because
individual players cannot affect the population distribution and therefore cannot influence
the future behavior of other players. Nevertheless, in special circumstances fully rational
adjustment differs from myopically rational adjustment. These special circumstances include
the availability of reliable information about payoffs at distant locations and about distant
distributions, and a current distribution far from a stable invariant distribution.

5.4 Examples

Guessing game. In Keynes’ famous beauty contest the winning player guesses most closely
the average opinion of all players. We consider a generalization in which the objective is to
guess a multiple a > 0 of the average guess. The distributed payoff function is

φ(x, D) = −0.5(x− ax̄)2, (16)

where x̄ =
∫

xdD(x) is the mean action for D. Note that φ cannot be derived from a pairwise
payoff function because it is nonlinear in D. In the Appendix we solve gradient dynamics
explicitly for this game. As is shown there, with initial condition F (x) = ρ(x, 0) the solution
has density

ρ(x, t) = etF [xet + x̄(0)(1− eat)]. (17)

As t increases the support of ρ becomes smaller and its density increases on its support. Thus
we have clumping as t → ∞. In particular, all mass converges exponentially to the initial
mean x̄(0) if a = 1, to the lower endpoint 0 if a < 1, and to the upper endpoint 1 if a > 1.
This behavior is consistent with the empirical results of [Nag95] for laboratory experiments
with 15− 18 paid human subjects, using a similar payoff function with a = 2/3.10

Bundt Payoff. Figure 3 shows the results of a numerical simulation of gradient dynamics
using an initial uniform distribution and the “bundt” pairwise payoff function of Section 4.

Observe that clumping results, with all mass in the limit distribution concentrated at the
points z± = .5± .25/

√
2 where the bundt rim r = .25 intersects the main diagonal [x = y];

the initial masses to the left and to the right of 0.5 are separately conserved for all t ≥ 0.
We will show in the next Section that this limit distribution is a Nash equilibrium, but that
perturbations of the bundt payoff function lead to limit distributions that have only a local
Nash property.

Replicator dynamics and inertial best-response dynamics produce different limiting distri-
butions. Replicator dynamics depend sensitively on the initial distribution, because the set

10See also [Cra95] for an analysis of some related population game laboratory experiments with distributed
payoff functions φ(x,D), in which the dependence on D is via an order statistic rather than via the mean
action.
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Figure 3: Simulation of gradient dynamics showing approximate asymptotic probability
density associated with pairwise bundt payoff function g(x, y) = 1024r4(1− r)exp(−512r4),
where r2 = (x− .5)2 + (y − .5)2.

of strategies actually employed does not expand as t increases. The limiting distribution for
the bundt is concentrated on actions in the initial support as close as possible to the points
z± defined above. Inertial best response dynamics are much less dependent on the initial
distribution. In the perturbed bundt example in Section 6.1 below, the limiting distribution
has all mass at a single point, the Nash equilibrium, beginning from any initial distribution.

6 Invariant Distributions

In this section we explore more formally the geometric intuitions developed in Section 4
regarding steady state behavior. We begin with standard and new definitions pertaining to
equilibrium.

� If D has a density ρ, the support , denoted Supp(D), is the smallest closed set containing
all points where ρ is positive.

The support of a distribution thus refers to the set of strategies in use. We also use the more
general definition

14



�Supp(D) = {x ∈ [0, 1] : D(x + ε) > D(x− ε)∀ε > 0}.

�A clumped distribution has discrete support only. It is composed of mass points or atoms.

Such distributions are conveniently expressed in terms of the Heaviside step function θ(x) = 1
for x ≥ 0 and θ(x) = 0 for x < 0. For instance, the limiting distribution D∗ in the bundt
example (Cf. Fig.3) has Supp(D∗) = {z−, z+}, and we can write D∗(x) = aθ(x− z−) + (1−
a)θ(x−z+), where a = D(0.5, 0) is the total mass to the left of 0.5 in the initial distribution.

�Dispersed distributions have support containing an infinite set of points.

�A Nash equilibrium (NE) of a symmetric single population game φ is a distribution D in
which every action in use is a best response.

In terms of the best response correspondence B(D) defined in section 5.1, the condition for
NE is Supp(D) ⊂ B(D), or more explicitly, φ(y, D) ≤ φ(x, D) for all y ∈ [0, 1] and all
x ∈ Supp(D).

�A pure NE is a NE distribution consisting of a single atom.

Hence the distribution D(x) = θ(x − z) is a pure NE if φ(x, D) ≤ φ(z, D) for all x ∈ [0, 1].
Much of the population game literature focusses on pure NE.

�A distribution D is a local Nash equilibrium (LNE) if Supp(D) is discrete and the NE
condition φ(y, D) ≤ φ(x, D) holds for all x ∈ Supp(D) and all y sufficiently close to x.

In the bundt example, θ(x − z−) and θ(x − z+) are both pure NE, and any distribution of
mass between the two points also is a NE. If we tilt the bundt slightly, say by adding ax+ by
to g(x, y) for small positive constants a and b, then the only NE is the pure NE supported at
the upper point z+. The other equilibrium distributions become LNE. Such slight tilts have
no qualitative effect on sign preserving dynamics. Hence LNE is a more robust equilibrium
concept than pure NE when dynamics are sign preserving.

The equilibria of a dynamical process are steady states or invariant distributions.

�A distribution D∗ ∈ D is invariant for LAP dynamics if the velocity field v(x, t) = 0 ∀x ∈
SuppD∗. A distribution D∗ ∈ D is invariant under sign preserving (or gradient) dynamics
for the distributed payoff function φ if

φx(x, D∗) = 0∀x ∈ SuppD∗. (18)

Given the boundary conditions (15), this condition can be relaxed to an inequality at the
endpoints x = 0, 1. Furthermore, at points x of discontinuity of φx(·, D∗) (18) becomes

φx(x−, D∗) ≥ 0 ≥ φx(x+, D∗). (19)
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� An invariant distribution D∗ is called stable if it is locally asymptotically stable, i.e., if
for every neighborhood V there is a neighborhood U such that every trajectory with initial
distribution D(·, 0) ∈ U remains in V for all t > 0 and converges to D∗ as t →∞.

6.1 Equal payoff property

Propositions 2 and 3 below show that NE and LNE distributions are invariant, and that
invariant distributions locally provide an equal payoff for every action actually employed.
Taken together, these results generalize the equal expected payoff property of mixed NE in
standard games and, in the context of population games, generalize the Bishop-Cannings
theorem ([MS82], p.182) to continuous action spaces.

Proposition 2 Let D∗ be a Nash Equilibrium or Local Nash equilibrium distribution for
distributed payoff function φ. Then D∗ is invariant under sign-preserving dynamics for φ.

Proposition 3 Let D∗ be an invariant distribution under sign-preserving dynamics for dis-
tributed payoff function φ. Then φ(·, D∗) is constant on every connected component of
Supp(D∗). If D∗ is stable, then φ(·, D∗) is maximized locally on every connected compo-
nent of Supp(D∗).

Proposition 3 implies the landscape is flat over the support of a dispersed invariant distri-
bution, and that the landscape is a “mesa” when the invariant distribution is stable.

7 Convergence to Equilibrium and the Idea of Progress

In this Section we show that an intuitive property of payoff functions we call progressivity
ensures convergence under sign preserving dynamics to an invariant distribution. Thus there
is no asymptotic divergence, convergence to a limit cycle, convergence to a strange attractor
(chaos), or nonexistence of a distribution due to singular behavior over finite time.

�The mean payoff of a distribution D ∈ D for a given distributed payoff function φ is

µD :=

∫
φ(x, D)dD(x) (20)

In particular, if D has density ρ, and if φ has an underlying pairwise payoff function g, then
we have the mean payoff
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µD(t) =

∫ 1

0

∫ 1

0

g(x, y)ρ(x, t)ρ(y, t)dxdy. (21)

�A distributed payoff function φ is progressive if its mean payoff µD(t) := µD(·,t) is strictly
increasing under gradient dynamics except when D(·, t) is invariant.

Proposition 4 Let φ be a progressive distributed payoff function. Assume sign preserving
dynamics. Then, beginning from an arbitrary initial distribution, the trajectory converges
asymptotically to some invariant distribution D∗. Moreover, if an isolated invariant distri-
bution D∗ is a strict local maximum of µ, then D∗ is (locally asymptotically) stable.

Remark: The main idea of the proof is that µ is a Ljapunov function for sign preserving
dynamics when the payoff function is progressive. The result is significant because there
are several types of games that are progressive and therefore always have convergent sign
preserving dynamics.

�The pairwise payoff function g and the associated distributed payoff function φ = E[g]
define a game of common interest if g(x, y) = g(y, x). These are also known as team games.

Players in a game of common interest receive the same payoff for any given distribution,
independent of their individual current actions. Thus all players have identical incentives to
make the distribution more favorable.

� The distributed payoff function φ has the nearest neighbor (NN) property if it depends on
the distribution only via its local value D(x) or slope Dx(x) = ρ(x).

� The NN payoff function φ defines a basic congestion game if φ(x, D) is a linear decreasing
function of the density Dx(x) = ρ(x) at x.

The payoff functions associated with hydrodynamics have the NN property.11 The continuous
analog of a standard congestion game, e.g. [Mil96], is an NN distributed payoff function
which depends only on ρ(x). Thus in a congestion game the payoff at any action x depends
only on the fraction of the population that choose actions arbitrarily close to x.12

� An NN payoff function is non-strategic if the payoff depends on the current action x but
not on the distribution D. In evolutionary biology, non-strategic payoffs result in frequency
independent selection.

11The NN restriction is important in models of random filling in statistical physics, physical chemistry and
biochemistry. It is also crucial to numerical simulations of fluid flow in aerodynamics and the general study
of turbulence, where it exemplifies the principle of no action at a distance. There are also some important
examples of NN interaction in population biology (e.g., choice of territorial location) and in economics (e.g.,
choice of quality or location in Hotelling-type models).

12There is a closely related literature on potential games, e.g., [MS96], [Ros73]. The literature on congestion
and potential games covers continuous as well as discrete action sets, but only for finite numbers of players.
[MS96] consider inertial best response dynamics in finite action congestion games.
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Proposition 5 Let φ define one of the following: (a) a game of common interest; (b) a
basic congestion game; (c) a nonstrategic game. Then φ is progressive, and the local maxima
of µ are stable distributions under sign preserving dynamics for φ.

7.1 Progress and evolution

Our definition of progressivity is consistent with the utilitarian notion that a society is better
off the greater the sum total of individual utilities. Given an infinite population with mass
scaled to 1, the mean payoff µ is then the natural measure of social well-being.

Beginning with [Dar59], many Victorian and some later writers argued that inherent in
natural selection is ineluctable progress benefiting organisms and species.13 If only the fittest
survive, the population becomes increasingly fit. If so, all payoff functions are progressive.
This argument can be explored in the present context by studying the time derivative of
(20), assuming for clarity that the density ρ exists:

µ̇(t) =

∫ 1

0

φ(x, ρ)ρt(x, t)dx +

∫ 1

0

∂

∂t
[φ(x, ρ)]ρ(x, t)dx. (22)

The first term on the right in (22) represents the direct effect of the population dynamics
on the mean payoff, given an unchanging payoff environment. Using (14) and integrating by
parts, we have ∫ 1

0

φ(x, ρ)ρt(x, t)dx =

∫ 1

0

φ(ρφx)xdx =

∫ 1

0

φ2
xρdx ≥ 0. (23)

Equation (23) shows that the direct effect is the mean squared variation of the fitness function
φ, which is strictly positive except at invariant distributions, where it is zero by theorem 3.

That Darwinian progress is not a general phenomenon is shown by the second term in (22),
which represents the indirect effect on mean payoff of changes in the action distribution. The
direct effect induces the players to climb towards higher ground. But the indirect effect moves
the ground under their feet. There are special cases in which the direct effect dominates,
consistent with Darwinian intuition. For example, in games of common interest and in basic
congestion games, the indirect and direct effects both increase fitness. But in other games
the indirect effect can be negative and dominate the direct effect.

Tragedy of the Commons. For example, let x be the exploitation intensity of a common
resource such as pasture land, and choose pairwise payoff g(x, y) = x−2y. The corresponding
distributed payoff φ(x, D) = x − 2x̄ , where x̄ is the spatial mean action for D. Then
φx(x, D) = +1, and each individual player gains by increasing x. On the other hand, the

13“And as natural selection works solely by and for the good of each being, all corporeal and mental
environments will tend to progress toward perfection.” [Dar59]. See [Bur21], Chap. XIX, for a review of the
post-Darwinian literature on progress and natural selection.
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aggregate of such individual actions increases the mean x̄, and, in view of φx̄ = −2, harms
every player more. We conclude that µ(t) = −x̄ is strictly decreasing except at a steady state
because the indirect effect is negative and twice as strong as the direct effect. Ultimately,
given any initial state, the distribution D(·, t) converges in finite time to the upper endpoint
D∗ = θ(x− 1). The result is that the pasture is overgrazed, and the mean payoff declines to
its lowest possible value, µ = −1.

8 Shock Waves and Status

We now consider NN payoff functions that implement rank or status dependence in the sense
of [Veb99] or [Fra85] ; the payoff at x depends only on the fraction of the population D(x) us-
ing actions y ≤ x. In such games, one’s action (e.g., choice of house size or vehicle price) does
not matter for its own sake and affects the player solely via its rank compared with all other
players’ actions. Rank payoff functions in general result in dynamics governed by nonlinear
partial differential equations similar or identical to known equations in hydrodynamics. We
show by example below that as in hydrodynamics, certain plausible initial conditions result
in discontinuous shocks in densities or distributions.

� A shock wave in our context is a discontinuity in the density ρ(x) or distribution D(x)
whose amplitude, a(t) := D(x+, t) − D(x−, t) > 0, and location x = z(t) ∈ (0, 1), are
continuous functions of time.

The status models below are characterized by shock waves of the compression type. An
example of a compression shock is a sonic boom. In a population game, a compression
shock in D(x, t) marks the emergence and spread of clumping behavior at action x = z(t),
participated in by an initially growing fraction a(t) of the population. One can interpret
such an interior atom as a “middle class” whose action (e.g., consumption level or wealth)
and size changes over time. Below, we give two relevant analytic solutions of the well known,
first-order shock equation ut = c(u)ux below.14

For simplicity, we take the signal speed c(u) proportional to u. In our first example, u is
the distribution D, and we have a solution of the shock equation composed of a uniform
distribution with decreasing amplitude and a fixed shock represented by an atom at the
endpoint x = 1. In the second example, u is the density ρ, and a right-moving compression
shock develops at finite time.

Cusp payoff. We consider a population game in which every player earns the difference
between his current position and all lesser positions. Then the pairwise payoff g(x, y) =

14From a study of the characteristics of this equation, one observes [Lax72] that if the signal speed c(u) is
monotone increasing in u, and if the spatial derivative of the initial wave function ux(x, 0) := ∂u0(x)/∂x < 0
on some open interval, then a spatial discontinuity develops in u(x, t). This discontinuity in u appears at
finite time and thereafter propagates with a speed set by conditions insuring mass conservation.
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(x− y)θ(x− y). The basic gradient dynamics equation (14) reads

ρt(x, t) = −[ρ(x, t)

∫ 1

0

θ(x− y)ρ(y, t)dy]x. (24)

In (24), the partial derivative gx(x, y) = θ(x − y), in view of the fact that the generalized
function xδ(x) = 0. In terms of the cumulative distribution D(x, t) =

∫ x

0
ρ(y, t)dy, (24)

therefore becomes
Dt = −DxD, 0 ≤ x < 1, (25)

with boundary condition D(1, t) = 1. Equation (25) is a simple form of the mass conservation
equation for the one-dimensional flow of an inviscid fluid. As is well known, a continuous
solution of (25) can be written in the parameterized form

D = D0(x−Dt), (26)

where the initial condition is D(x, 0) = D0(x). For illustrative purposes, we set D0(x) = x,
so that we have the initial uniform density ρ0(x) = 1 on [0, 1]. Inserting this initial condition
into (26), the full solution of (25) becomes

D(x, t) =
x

1 + t
+

t

1 + t
θ(x− 1). (27)

Step payoff. Consider a second population game in which the players earn a fixed amount
proportional to the number of players at lesser positions. That is, φ(x, D) = D(x) is precisely
the rank or status of the player in the distribution. Then the pairwise payoff is g(x, y) =
θ(x− y), and (25) is replaced by the almost identical relation

ρt = −2ρρx (28)

for the density ρ. We write the parameterized solution

ξ = x− 2ρt, ρ = ρ0(ξ), (29)

with initial condition ρ(x, 0) = ρ0(x). As before, the continuous solution is

ρ = ρ0 [x− 2ρt] , 0 ≤ t ≤ t∗ (30)

which holds on a range of t to be determined.

We choose as initial condition the inverted parabola

ρ0(x) = 48x(
1

2
− x), 0 ≤ x ≤ 1

2
, (31)
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Figure 4: Time development of shock wave in probability density of actions, given cusp
pairwise payoff function g(x, y) = (x− y)θ(x− y).

with support only on [0, 1/2]. Because (31) is monotone decreasing on [1/4, 1/2], a shock
front develops at x = 1/2 and moves to the right until all probability mass piles up at x = 1.
As shown in the Appendix, the strength and position of the front are given, respectively, by

v(ξ−) =
3(
√

1 + 3τ − 2)

(
√

1 + 3τ − 1)2
, (32)

zs(τ) =
7
3

+ 2τ − 5
3

√
1 + 3τ

√
1 + 3τ − 1

. (33)

The movement of the shock wave is shown in Figure 4.

9 Dispersal

Many of the examples presented so far — compression shock waves, migration towards an
endpoint, and concentration at an interior local NE — feature clumping behavior. The next
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two examples demonstrate the opposite sort of behavior, in which the action distribution
becomes more dispersed with time, in the extreme case becoming the uniform distribution
in [0, 1].

Expansion wave. We note first the classic case of the centered expansion wave or “fan”
(see, e.g., [Log94], Chapt. 3). We assume again the pairwise cusp payoff function g(x, y) =
(x− y)θ(x− y), leading to Dt = −DxD, 0 ≤ x < 1, as in equation (25). However, we choose
the initial condition D0(x, 0) = θ(x − q), so that initially there is an atom at some interior
point q, 0 < q < 1. The known solution of Dt = −DxD under these conditions is

D(x, t) = θ(x− q)[θ(t− x + q)
x− q

t
+ θ(x− q − t)], t < 1− q. (34)

Equation (34) tells us, in terms of the probability density Dx, that for all times t such that
0 < t < 1 − q, the initial atom disperses into a square wave of width t and amplitude 1/t,
extending over the x-interval [q, q + t]. For all times t > 1− q, probability mass piles up at
x = 1.

Symmetric power-law payoff. Consider the pairwise payoff function g(x, y) = |x− y|a where
a > 0. Figure 5 shows the asymptotic behavior beginning from an initial uniform distribution
under gradient dynamics, for a = .5 and a = 2, respectively. In general, all mass ultimately
accumulates at the endpoints x = 0 and 1 when a > 1, but we get convergence to a dispersed,
smooth, U -shaped limiting distribution when a < 1. This behavior is independent of the
initial distribution. The reason is that payoff functions g or φ exhibit decreasing returns in
the sense that a player has an incentive to choose x as distant as possible from other players’
choices. For a > 1 the marginal benefit of increasing distance from other active strategies
is greater for more distant actions, but for a < 1 nearby actions of other players are more
important. Thus, dispersal occurs given congestion effects in the sense of sufficiently strong
local decreasing returns.

9.1 Analysis

We now show that if payoffs are sufficiently impaired by congestion there is asymptotic
convergence to a dispersed invariant distribution. We formalize the idea of congestion effects
(i.e., strong locally decreasing returns) and prove that the resulting invariant distribution
has no atoms.
� For given K > 1, the distribution D is K-denser at x than at y if there is some ε̂ > 0 such
that D(x + ε)−D(x− ε) > K[D(y + ε)−D(y − ε)] ∀ε ∈ (0, ε̂).

Examples : (i) the (unit) normal distribution is K-denser at 0 than at 1 for all K <
exp(−0.5) ≈ 1.6. (ii) If D has an atom at x but not at y, then it is K-denser at x than at y
for all positive K.
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Figure 5: Approximate asymptotic probability densities for pairwise payoff function g(x, y) =
|x− y|a. Curve A: a = .5. Curve B: a = 2.

� The distributed payoff function φ is locally repulsive if there is some K > 1 such that
φ(x, D) < φ(y, D) whenever D is K-denser at x than at y.

Examples : (i) if a < 1 then φ(x, D) =
∫
|x − y|adD(y) is locally repulsive. (ii) Basic

congestion games (Cf. sec. 7) in which the payoff decreases with ρ(x) are locally repulsive.

Proposition 6 Let D∗ be an invariant distribution under sign-preserving dynamics for a
locally repulsive distributed payoff function φ. Then D∗ has no atoms.

10 Clumping

In this section we find conditions on payoff functions that ensure complete clumping under
sign preserving dynamics. We consider convergence to pure Nash equilibria (PNE) and also
consider some related equilibrium concepts in evolutionary biology.
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10.1 Convergence to pure NE

The sharpest results hold for a class of payoff functions that have only a single relative
maximum. We will show that payoff functions with the appropriate convexity property —
which we will call monotony because the gradient is monotone and the landscape has no
striking features — have a best response correspondence that is a continuous function. The
PNE turn out to be points where the graph of the best response function intersects the
diagonal of the unit square. The stable PNE are intersection points where the slope of the
best response function is less than 1.

� A payoff function φ (or g) is monotonous if its gradient φx(x, D) (or gx(x, y)) is strictly
decreasing in its first argument x and continuous in its second argument D (or y).

A classic example of a monotonous payoff function, the Cournot profit function, is discussed
in Section 11.1 below. It is straightforward to verify that monotony of the pairwise payoff
function g implies monotony of the distributed payoff function φ = Eg. In the Appendix
we show that monotony of φ implies that the best response correspondence is a continuous
function of D. Hence b(y), the best response to the pure atomic distribution θ(x − y), is a
continuous function with domain and range [0, 1].

The next result characterizes pure Nash equilibria for our systems as intersections of the
graph of b with the diagonal [x = y] in the unit square, and shows that monotony is a
sufficient condition for existence of pure Nash equilibrium. It is natural to identify a pure
NE, D∗(x) = θ(x− y∗), with its support y∗, and to write y∗ ∈ PNE(φ).

Proposition 7 PNE(φ) = Diag ∩Gr[b], and if φ is monotonous then PNE(φ) 6= ∅.

We now consider the stability of PNE.

� The PNE y∗ ∈ Diag∩Gr[b] is a downcrossing if, for y sufficiently close to y∗, the difference
(b(y) − y) has the same sign as (y∗ − y). The PNE is an upcrossing if (b(y) − y) has the
opposite sign from (y∗ − y).

If b is differentiable at y∗, then we have a downcrossing (upcrossing) if b′(y∗) < 1 (> 1). See
Figure 6 for an illustration.

It is well known that for “generic” functions b(·) every PNE is either an upcrossing or a
downcrossing (see, e.g., [GP74]). Then by the intermediate value theorem there are 2n − 1
PNE, where n ≥ 1 is the number of downcrossings.

The main result of this subsection is that PNE are the only invariant distributions for
monotonous payoff functions, and downcrossings support the only stable distributions.
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Figure 6: Best response y = b(x) given action x, showing stable Nash Equilibrium down-
crossings (1,3) and unstable upcrossing (2).

Proposition 8 Let D∗ be an invariant distribution under sign preserving dynamics for a
monotonous distributed payoff function φ. Then D∗ is a pure Nash equilibrium. If D∗ is also
stable, then it is supported at a downcrossing. At least one downcrossing exists.

10.2 ESS and CSS

Following [MSP73], there has been considerable discussion of points in action space called
evolutionarily stable strategies (ESS). Clumping at these points is a stable configuration
in the sense that an ESS resists invasion by any other strategy carried out by a small
fraction of the population. The normal context is a two-player symmetric game with a
finite unordered action set. [EM81] and several later authors point out that the conditions
for an ESS require strengthening when the action set is continuous. [Esh83] argues for an
equilibrium concept called continuously stable strategy or CSS, which resists small deviations
by the entire population. In this subsection, we show that the key CSS inequality condition
is essentially the same as the downcrossing concept introduced above in Section 10.1, and
that applying the relevant downcrossing condition implies stability against more general
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perturbations than are considered in the literature.

�Let φ = Eg for a given pairwise payoff function g. The action x∗ ∈ [0, 1] is an ESS for g if
φ(y, D) < φ(x∗, D) for all distributions of the form D(x) = (1− ε)θ(x− x∗) + εθ(x− y) for
all ε > 0 sufficiently small.

The strict inequality above is intended as a stability condition. It is based on the intuition
that if the population is clumped at an ESS x∗ then a small invasion of mutants clumped
at any other action (phenotype) y will die out because the mutants receive a lower payoff.
It is well known that an ESS is a pure NE. This follows immediately if one takes the limit
ε → 0 in the definition above, recovering the defining property of a pure NE that x∗is a best
response to the distribution θ(x− x∗).

If the payoff g is twice continuously differentiable one can write the local necessary conditions
for ESS as

gx|x=x∗(x, x∗) = 0; (35)

gxx|x=x∗(x, x∗) ≤ 0 . (36)

These local conditions are also sufficient if the fitness function is monotonous and the in-
equality in (36) is strict.

Conditions (35,36) do not guarantee stability against small perturbations of the continuous
phenotype [EM81]. If the entire clumped distribution is displaced slightly from an ESS x∗,
an additional condition is needed to ensure local stability, in the sense that the distribution
moves back towards x∗. The gradient at x must be positive (negative) when x is slightly
below (above) x∗. In view of (35), we can write the additional condition as

(d/dx|x=x∗)gx(x, x) = gxx(x
∗, x∗) + gxy(x

∗, x∗) ≤ 0. (37)

[Esh83] shows that if (37) holds with strict inequality at an ESS x∗, then x∗ satisfies the
following definition of continuous stability.

�The phenotype x ∈ [0, 1] is a CSS for the symmetric two-player game g if ∃ε > 0∀y ∈
(x− ε, x + ε) ∃ δ > 0 ∀z ∈ (y − δ, y + δ) [g(z, y) > g(y, y) ⇐⇒ |z − x| < |y − x|].

This formal definition implicitly assumes that the phenotype distribution remains clumped
(at y or z), contrary to the motivation of CSS as a stability concept.

Proposition 9 Let g be a twice continuously differentiable pairwise fitness function, and let
D∗ be a clumped distribution supported at a point x∗ ∈ [0, 1]. If D∗ is a NE stable under sign
preserving dynamics for φ = Eg, then conditions (35 - 37) hold. Conversely, if conditions
(35 - 37) hold with strict inequalities, then D∗ is a pure NE, and x∗ is a downcrossing.

Hence, stability implies the local conditions (35 - 37), and these conditions with strict inequal-
ities are sufficient for stability. Note that our results permit arbitrary transient distributions,
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more general monotonous fitness functions φ (not necessarily additive random-pairwise from
a smooth g), and arbitrary sign preserving dynamics.

11 Applications

11.1 Cournot Duopoly

The classic Cournot duopoly model, e.g., [FT91], posits two firms that simultaneously choose
outputs x and y. This model is static. It is assumed that these firms have zero fixed cost and
identical constant marginal cost and face a downward sloping linear demand function. For
convenience, scale the marginal cost to 0 and also scale the downward slope and intercept of
demand to 1. Then price is 1−x−y, and the restriction x, y ∈ [0, 1] is natural. The pairwise
payoff function to the firm choosing x when its rival chooses y is then g(x, y) = x(1− x− y)
= profit = revenue.

We now place the Cournot model in a dynamic context. Either of two interpretations of the
distributed payoff

φ(x, D) =

∫ 1

0

x(1− x− y)dD(y). (38)

is a suitable starting point.

The first interpretation is that each firm faces a large number of potential rivals whose output
choices have distribution D. Firms have strategic uncertainty in the sense that they have
no knowledge of D. Nevertheless, as they marginally adjust output they see on average the
local profit gradient φx(x, D).

The second interpretation, based on [Sky86], is that the Cournot payoff represents the sub-
jective expected profit of a firm contemplating (but not yet committed to) output x. The
notion is that management’s anticipations of their rival’s future choices of actions are sum-
marized in D. Gradient or other dynamical adjustment models then represent an internal
process of modifying beliefs as the firm contemplates the potential profit consequences to
itself and its rivals. Only when the process converges to an invariant distribution does the
firm actually commit to produce output.

Under either interpretation (38) holds, and the payoff function has gradient

φx := v(x, t) =

∫ 1

0

(1− 2x− y)ρ(y, t)dy = 1− 2x− x̄(t). (39)

We assume the initial distribution has density F (x) := ρ(x, 0), with mean x̄(0). Thus the
continuity equation (14) becomes

ρt = −vxρ− vρx = 2ρ− [1− 2x− x̄(t)]ρx. (40)

27



The initial value problem for (40) can be solved using the same approach as in the guessing
game of Section 5.4. From (40), we find that the mean action satisfies the differential equation
dx̄/dt = 1− 3x̄. If the solution x̄(t) = [x̄(0) − 1/3] exp(−3t) + 1/3 is inserted into (40), we
obtain the linear partial differential equation

ρt = 2ρ− [
2

3
− 2x + (x̄(0)− 1

3
)e−3t]ρx. (41)

Standard techniques yield the solution

ρ(x, t) = e2tF [x̄(0) + (x− 1

3
)e2t − (x̄(0)− 1

3
)e−t]. (42)

Inspection of (42) shows that as t increases, the initial support shrinks at exponential rate
e2t toward the limit distribution δ(x − 1

3
), which is a pure Nash equilibrium. That ρ(x, t)

converges smoothly to an asymptotic equilibrium is in fact a general property that follows
from the results in Section 10. In particular, it is easy to check that g(x, y) is monotonous.
The results of Section 10 further show that the assumption of an initial dispersed distribution
ρ(x, 0) is superfluous. We conclude that in its extension to population games the standard,
single atom Nash-Cournot equilibrium is even more robust than might have been supposed.
Even with a continuum of potential firms and with sign preserving dynamics the pure Nash
equilibrium is globally stable.

11.2 The Edgeworth-Bertrand Model as Foraging Competition

We now consider a population game based on the Edgeworth-Bertrand (EB) duopoly model
[Edg97]. The EB model has been well studied as an example of capacity constrained price
competition and as a model of resource use in population biology (e.g. [Rog95]). We address
the question whether cycling or mixed NE behavior occurs in the context of gradient dynam-
ics for the EB population game. Different views appear in the literature. Recent discussions
of capacity constrained price competition, (e.g., [Tir88], pp.211ff. and p.234), argue for a
mixed NE rather than cycles. However, these models include no dynamics. In the popula-
tion biology literature the suggestion has been made [Rog95] that there are cycles in certain
circumstances.15 [Edg97] also argued for a cyclic outcome given price competition in which
duopolistic firms are capacity constrained, so that neither firm alone can meet demand at
zero price. Near price 0, it is profitable for one firm to withdraw from the market and then
re-enter at a high price to meet residual demand. Edgeworth argued that if this occurs the
other firm will also raise its price, and the two firms will again compete on price, gradually
driving the price down until one firm withdraws and later reenters at high price, so that
prices cycle. As we shall explain, our numerical simulations suggest the conclusion that with
gradient dynamics there is asymptotic, monotonic convergence to a mixed NE.

15In particular [Rog95] argues that replicator dynamics cycle if the cost parameter c introduced below is
less than 0.5, and that this value is a cutoff above which replicator dynamics leads to an asymptotic ESS .
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We begin with equivalent economic and biological interpretations of the EB model.

Duopoly. Two firms compete to supply a market. At any time, each firm may choose to
participate actively or not to participate. Non-participation earns zero profit. The two firms
play a pairwise game, using price as their action. Let x ∈ [0, 1] denote the price charged by
an active firm, while x = Z denotes non-participation. An active firm incurs a positive fixed
cost c and has zero marginal cost. All consumers buy a single unit from the lowest cost firm
up to a choke price of 1. When both firms charge the same price, consumers split their total
demand evenly. We scale maximal demand to 1.

Under these conditions the pairwise payoff function is

g(Z, y) = 0,

g(x, y) = x− c, x ∈ [0, 1], y > x, y = Z

g(x, y) = 0.5x− c, y = x ∈ [0, 1]

g(x, y) = −c, 0 ≤ y < x ≤ 1. (43)

Harvesting. There is an equivalent biological interpretation. A resource has gross value 1
when fully ripe and a continuum of values x at earlier times, scaled so that x ∈ [0, 1]. By
incurring a cost c ∈ [0, 1), a player has the right to try to harvest at his chosen time τ = x,
but another player has the same opportunities, and the player choosing the earliest harvest
time gets the crop. Non-participation, denoted x = Z, is another possible action. The payoff
function is then precisely the EB g(x, y) in (43).16

We now apply gradient dynamics to the EB population game. The definition of a distribution
needs to be generalized slightly to accommodate the non-standard action space A = [0, 1] ∪
{Z}. As before, let D(x, t) represent the fraction of the population at time t choosing
actions in the interval [0, x], where x ∈ [0, 1]. We denote the non-participating fraction of
the population by ρ(Z) = 1−D(1) ≥ 0. The expected payoff then becomes

φ(Z,D) = 0, (44)

φ(x, D) = −c + x(1−D(x)), x ∈ [0, 1].

Gradient dynamics itself also requires some generalization in the context of this non-standard
action space. No change in (12) is required at points (x, t) where φ(x, D(·, t)) > 0 and

16The biological interpretation in the text is based on the [Rog95] model of foraging competition. There
are further interesting interpretations. [Rog95] implicitly relates his model to the tragedy of the commons
and explicitly to sealed bid common value auctions with an entry fee, citing [LS94]. Reinterpreting the
action variable as maximal waiting time instead of price, the model becomes a version of the war of attrition;
see [FT91], especially chapter 4.5. Models of competition between species where size has a cost (but is
advantageous in direct competition) raise many of the same issues, e.g., whether cycles are relevant [AM94].
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D(1, t) = 1. At other points, probability mass can flow from points of negative distributed
payoff in [0, 1] to Z, and from Z to points in [0, 1] with positive payoff.

EB invariant distribution. An invariant distribution D∗ satisfies the equation φ(x, D∗) = 0
for all x in Supp D∗. We state without proof that the invariant distribution is unique.17

D∗(x) = 0 for actions with x < c that are associated with negative profit and are therefore
dominated by non-participation x = Z. Inserting (44) into φ(x, D∗) = 0 for c ≤ x ≤
1, we have the continuous action space equilibrium density D∗(x) = 1 − c/x, with mass
1 − D∗(1) = c = D∗(Z). The associated continuous density ρ∗(x) = c/x2for x ≥ c and
ρ∗(x) = 0 for c ≤ x ≤ 1.

Discrete model. For computational purposes, we specify the EB dynamics on a discrete
action space. Let j = 0, ..., n − 1 index grid points between 0 and 1. Let j = n index the
no-participation point x = Z. At j = n the pairwise payoff function g(n, i) = 0, so the
(vectorial) distributed payoff φ(Z,D) =0. On the other hand, at regular grid points k ≥ 0,
the distributed payoff is φ(k,D) = −c+(1−Dk)k/(n+1), where Dk =

∑k−1
j=0 ρj +0.5ρk is the

probability that a player with current action k is preempted by another player’s lower choice
j. As before, the dynamics are generated by outflow from points k to all nearest neighbors
that have higher φ, at rates proportional to the differences φk±1 − φk, φn − φk.

The novelty here is an extra nearest neighbor at the no-participation point j = n. This
extra lattice point can have zero mass and always has zero payoff. The evolution matrix (3)
therefore takes the form

M =



X−
1 + φ−0 X+

1 ... 0 0 φ+
0

−X−
1 −X+

1 + X−
2 + φ−1 ... 0 0 φ+

1

0 −X−
2 ... 0 ... ...

0 0 ... 0 0 ...
0 0 ... X+

n−2 0 ...
0 ... ... −X+

n−2 + X−
n−1 + φ−n−2 X+

n−1 φ+
n−2

0 0 ... −X−
n−1 −X+

n−1 + φ−n−1 φ+
n−1

−φ−0 −φ−1 ... −φ−n−2 −φ−n−1 −
∑

j φ+
j


(45)

with an extra row and column associated with the non-participation option.

EB Simulation. We have simulated the EB game for different choices of initial density ρ(0)
and cost c. As shown in Figure 7 for the particular choice of an initial uniform density and
c = .3, our numerical analysis suggests the system asymptotically progresses monotonically
to equilibrium, whatever the initial state.18

17Similar arguments to the ones used in Proposition 3 can be used to support this conclusion for the EB
non-standard action space.

18A numerical consistency check on monotonicity is given by following the time derivative of the scalar ρ2
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Figure 7: Simulation of gradient dynamics for the Edgeworth-Bertrand (or Foraging) model,
with parameter c = 0.3 (see text). From a uniform distribution ρ(0), there is monotonic
progression towards the asymptotic density ρ∗(x) given in the text, which has a step discon-
tinuity at x = c.

11.3 Relation of LAP to other models

We conclude this section with some brief remarks on other economic and biological models
in the literature from the perspective of LAP dynamics.

11.3.1 Location of Firms

Firm location is perhaps the most obvious economic application of our population games. A
salient example is the “main street” model of [Hot29], in which firms choose location x on

along a trajectory. We have
dρ2

dt
= ρT (M + MT )ρ :=V ,

where T indicates transpose. The quantity V = 0 at equilibrium, because negative profits force components
ρk = 0, k ≤ Nc, and the equilibrium payoff condition φk = 0, k > Nc, which implies M = 0 for evolution
matrix elements describing positive profit transitions. We find V goes monotonically to 0 near equilibrium
for every type of initial condition.
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the line segment [0, 1], delivered price increases with distance from buyer to supplier, and
demand goes to the firm offering the lowest delivered price. Clumping of suppliers results in
the most popular versions of the model.

Following [ASS83] (who extend the work of [Son82]), consider the Hotelling-type model in
which profit is earned by a firm at location x on the infinite line R when the distribution
of firm locations is D. Supply at x is the density ρ(x, t) of the current distribution D(·, t).
Demand arises from buyers with a fixed location distribution who each buy a single unit at
the lowest full price. Full price to a buyer at distance r from x is the price at x plus r2. The
distributed payoff function φ is defined implicitly by the prices determined by the condition
that supply equals demand at each infinitesimal location x. The supply distribution D(x, t)
adjusts according to gradient dynamics, essentially as in our equation (14).19

The main conclusion of [ASS83] is that the supply distribution converges to a dispersed
invariant distribution when demand is dispersed. The basic feature that leads to this result
is that prices (and hence profit) are lower at locations with a lower ratio of demand to
supply. It is straightforward to show that this feature implies that the payoff function is
locally repulsive on the support of the demand distribution. Consequently our Proposition
6 immediately implies the conclusion of [ASS83]. This derivation suggests that convergence
to a dispersed distribution, as in [ASS83], is more natural than the conventional conclusion
that firms will clump their actions.

11.3.2 Evolution of Continuous Biological Traits

Models of gradient selection have been widely used to describe the evolution of quantitative
characters (e.g. gestation time, foot speed, beak size, etc.) For example, given the normal
distribution of phenotype associated in many instances with a polygenic trait, one can argue
that the mean phenotype evolves at a rate proportional to the gradient of the fitness function,

d x

dt
= σ2φx(x), (46)

where σ2 is the additive genetic variance [Lan82]. More generally, the dynamics reflect
frequency dependent selection where fitness φ(x, D) depends on the distribution D of a trait
across the current population. Most existing models assume fitness depends on D only via
summary statistics. For example, in recent discussions of evolutionary stability and ESS

19Our results show that one need not assume gradient dynamics; sign preserving dynamics will do. Nor is
it necessary to assume transportation costs that are quadratic in distance. The [ASS83] analysis implicitly
relies on the fact that interactions are assumed nearest neighbor (NN). The competitive price at a point x
responds to changes in the the distribution D at points y far away from x, but it turns out that only the total
mass to either side of x matters, so indeed interactions are NN with respect to the cumulative distribution
function.Using our methods, one can show that this property is inessential also. We note also that we are
able to work on the original state space [0,1], while [Son82] and [ASS83] avoid endpoint problems by working
on the unit circle and infinite line respectively.
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[e.g., [AMH93], [Tay95]] the summary statistic used is the spatial mean x̄ =
∫

xdD(x), with
a dynamics of the form

x̄t = σ2φx(x, x̄). (47)

.Our approach offers three extensions of the existing models. First, we are able to consider
more general forms of frequency dependence, consistent with general theory [Wri49]. For
example, this generality permits examining a range of models of maladaptation [Lan76] and
coevolutionary stability [AMH93]. Models assuming D is concentrated on a single point
x̄, or on two or more discrete points [MGM+95], can be extended to a continuous trait
distribution. A particular case occurs in Darwin finches where a subset of the population
with very similar beak size has important evolutionary significance [Wei94]. It would be
natural to model fitness φ(x, ·) in that case to depend on the distribution D via its density
ρ(x) at a particular point rather than on the spatial mean x̄ . Second, we have results for
sign-preserving dynamics, not just strict gradient dynamics. Sign preserving dynamics can
deal with non-constant σ2. Third, while the existing literature deals with static concepts
such as ESS and CSS, our results hold for a variety of static and dynamic equilibria, e.g.
locally asymptotically stable invariant distributions.

Consider the following example adapted from [Esh83], example 1, which is a slight gen-
eralization of the quadratic model that obtains in weak stabilizing selection [LS96]. Let
g(x, y; z) = −(x − z)2 − (x − y)2, 0 < z < 1,so that the fitness of phenotype x increases
quadratically in the distance from an exogenously optimal value z and from the phenotype
y of other individuals. Then one can verify from (21) that the payoff function is progressive.
Hence, by Proposition 4 there is a unique limit distribution, and that distribution maximizes
µ. We conclude that D∗(x) = θ(x− z) is the global attractor from any initial distribution.

This example exhibits an extension of Eshel’s conclusion that inefficient ESS’s for the discrete
version of the model disappear when the trait is continuous. Thus, it appears one need not
impose Eshel’s strong assumption that the initial trait distribution is completely clumped.
Our approach can also deal with much more general specifications of the fitness value of
gregariousness, such as quadratic distance from the population mean (as in Sect. 5.4.2), or
the fraction of the population within a fixed distance interval ε.

12 Summary and Discussion

We have argued here that local adjustment path (LAP) dynamics, which permit adjustment
with only finite velocity, are natural for population games with an ordered action space. LAP
dynamics are distinct from replicator, best reply and other dynamics previously studied in the
evolutionary games literature. LAP dynamics unify separate literatures on nearest neighbor
(NN) interactions from fluid dynamics, mean field interactions from population biology and
elsewhere, and random pairwise interactions from evolutionary game theory. LAP dynamics
can be visualized as taking place on a payoff landscape that shapes the continuous adaptation
of the player population and is itself reshaped by the adapting population.
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Our main analytic results concern the population distribution of player behavior (and the
corresponding landscapes) on the unit interval [0, 1] for sign-preserving dynamics, in which
the local adjustment path has the same direction as the payoff gradient. We have shown how
such dynamics arise in the presence of adjustment costs, and have characterized the land-
scapes of their invariant distributions. We are able to associate LAP invariant distributions
with well-known static equilibrium concepts such as Nash equilibrium (NE) and evolution-
ary stable strategy (ESS). Sufficient conditions were developed for convergence to invariant
distributions, and for convergence to clumped distributions and to dispersed distributions.
We have described applications in economics and biology and have exhibited the results of
numerical simulations.

Many important theoretical issues remain open. To our knowledge, little formal work has
as yet be done to explore continuous action spaces for non-LAP dynamics. We conjecture
that non-LAP models, such as replicator dynamics, have properties on continuous action
spaces similar to their known behavior on discrete, finite action spaces. We expect that
more sophisticated analysis is possible for the relation between adjustment costs and the
implied dynamics. Implicit adjustment costs arise from risk or aversion to ambiguity - e.g.
in circumstances under which each player knows the payoff and the payoff gradient at his
current location, but is uncertain of the current distribution D (strategic uncertainty) and
may not even know the payoff function beyond the immediate neighborhood of his current
action. We conjecture further that if uncertainty, as measured by the variance of the estimate
of φ(x + z, D), increases linearly in |z| then gradient dynamics will result. For more general
forms of adjustment cost, we expect to see sign-preserving dynamics.

It remains an open question whether sign preserving dynamics necessarily converge to an
invariant distribution for non-progressive payoff functions. We have found no counterexam-
ples thus far. The proof of Proposition 4 would work just as well if one replaced the mean
fitness µ by any other functional that increases along trajectories. We conjecture that some
appropriate measure of entropy or the negative of mean squared variation can serve as a
Ljapunov function for a broad class of payoff functions. We believe it also is possible to find
sharper characterizations of payoff functions that always converge to clumped distributions
or dispersed distributions.

The arguments presented here allow for considerable generalization. One can deal with
population games among m distinct (sub)populations or types k = 1, . . . ,m that have dif-
ferent action sets Ak. The relevant set of distributions is the joint probability measures
D(A1 × · · · × Am). It is also straightforward to construct asymmetric population games
from an arbitrary m-player game in normal form by assuming random matching across other
subpopulations and taking expectations.

Richer action spaces than [0, 1] can also be accommodated. In fact, intervals unbounded on
either or both sides are more tractable than a bounded interval. We have already expanded
the action space somewhat in the Edgeworth/foraging and firm location applications of
Section 11. Higher dimensional action spaces present no conceptual obstacles, although
there we expect dynamic equilibria to include cycles and chaotic attractors, as well as the
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point attractors (stable distributions) we have studied here. The discrete approximations
used here also extend in a natural fashion. The set of nearest neighbors is larger — 2D in
D dimensions — but the uphill flow rules still apply to each pair of nearest neighbors and
can be implemented directly.

We believe that new applications of LAP dynamics offer research opportunities. There are
many physiological and behavioral traits subject to frequency dependent selection. LAP
dynamics are appropriate when a single mutation typically changes the trait values only
slightly. In economics, politics, and finance one often has interactions among many actors
with essentially continuous choices, e.g., the location of firms, the capital structure or degree
of financial leverage, the incentive intensity of employment contracts, the degree of revelation
in bidding at auction, or credit standards. Given explicit or implicit adjustment costs, LAP
dynamics is a natural way to model these applications.

13 Appendix

13.1 Notation

Given a function f of two variables x and y, and some fixed value of y, f(·, y) denotes the
function of the single variable x whose value is f(x, y).

A := B means “A is defined as B.”

Gr[f ] refers to the graph {(x, y) ∈ [0, 1]2 : y = f(x)} of a function f that has domain and
range [0, 1].

Diag := {(x, y) ∈ [0, 1]2 : x = y} denotes the diagonal in the unit square.

Trailing + and − refer respectively to left and right limits, viz. h(0+) = limx↓0 h(x).

Superscripted + and − refer respectively to positive and negative truncations, viz. x+ =
max{0, x}, x− = min{0, x} .

The Heaviside step-function, θ(x) = 1 for x ≥ 0 and θ(x) = 0 for x < 0, can be used to write
x± = xθ(∓x).

The Dirac delta-function δ(x) is the (improper) density associated with the cumulative dis-
tribution function θ(x), viz. θ′(x) = δ(x).

We denote partial derivatives by subscripts, e.g. fx(x, t) = ∂f
∂x

.
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We drop arguments of functions , e.g. x for x(t), when the meaning is clear in context.

Diamonds (�) label definitions; squares (�) indicate the completion of a proof; triangles (N)
indicate the completion of a derivation.

.

13.2 Proofs

Proposition 1. Myopically rational players facing quadratic adjustment costs choose ad-
justment rates v(x, t) = cφx(x, t), where c > 0 is proportional to ∆t for x ∈ (0, 1) and
satisfies the boundary conditions (15) at the endpoints x = 0 and 1.

Proof of Proposition 1: Consider a player who adopts current strategy x(t) ∈ (0, 1)
and faces quadratic adjustment cost at rate av2, for some a > 0. The objective function
then is

Maxv

∫ ∆t

0

(φ(x + vs, D(·, t + s))− av2)ds.

For ∆t small we have the trapezoidal approximation for the maximand

0.5(φ(x, D(·, t)) + φ(x + v∆t,D(·, t + ∆t)))∆t− av2∆t.

Since by assumption a single player has negligible influence on the population distribution
D(·, t + s), the first-order condition is 0 = 0.5φx∆t − 2av with solution v = 0.25∆ta−1φx.
The second-order condition automatically is satisfied for a > 0 and ∆t sufficiently small.
Hence at interior points the conclusion holds with c = .25∆ta−1 > 0. At endpoints we have
the same maximization problem with the additional constraint v ≥ 0 at x = 0 or v ≤ 0 at
x = 1. The conclusion follows. �

Proposition 2. Let D∗ be a Nash Equilibrium or Local Nash equilibrium distribution for
distributed payoff function φ. Then D∗ is invariant under sign-preserving dynamics for φ.

Proof of Proposition 2: Let D∗ be NE or LNE for payoff function φ, and let x ∈ SuppD∗.
By definition, φ(·, D∗) is locally maximized at x. Thus, if it exists, the gradient φx(x, D∗) = 0.
If φx(x, D∗) does not exist, then the relevant inequality conditions (19) are satisfied. Hence
D∗ is invariant.�

Proposition 3. Let D∗ be an invariant distribution under sign-preserving dynamics for
distributed payoff function φ. Then φ(·, D∗) is constant on every connected component
of Supp(D∗). If D∗ is also stable, then φ(·, D∗) is maximized locally on every connected
component of Supp(D∗).
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Proof of Proposition 3: Let x ∈ Supp(D∗) be isolated. Any function defined only on
a singleton is trivially constant, so it suffices for an isolated point to show that if x is not
a local maximum of φ then D∗ is unstable. Suppose now that x is not a local maximum.
Then in any neighborhood N of x there is a y such that φ(y, D∗) > φ(x, D∗). For specificity,
say y > x. If the gradient φx is continuous on [x, y], then by the Mean Value Theorem there
is some z ∈ (x, y) such that φx(z) > 0. By continuity in D, this inequality holds for all D of

the form (1− a)D∗ + aD̃, where 0 ≤ a ≤ ε, and D̃ is a distribution with support containing
[x, y]. For any sign preserving dynamics beginning from an initial distribution of such form
with D(z, 0) < D∗(z), we see directly from sign preservation that D(z, t) is decreasing in t.
Hence the trajectory D(·, t) fails to converge to D∗ as t →∞, so D∗ indeed is unstable. The
case y < x is handled in a similar fashion: one finds a point z ∈ (y, x) with φx(z, D∗) < 0
and shows that mass to the left of z increases over time, so that the distribution under sign
preserving dynamics again fails to converge to the atomic distribution D∗. The continuity
assumption on φx is not essential. By taking a sufficiently close continuous approximation
of the gradient the same argument follows. Arbitrarily close continuous approximations are
available because the continuous functions are a dense subset of the piecewise continuous
functions on [0, 1] by Lusin’s Theorem (e.g., [Rud73], p 53).

Next consider an interior point x of an interval, I, contained in Supp(D∗). The invariance
of D∗ implies that v(x, D∗) = 0 and sign preservation implies that φx(x, D∗) = 0 for every
x in the interval. Hence the payoff is constant on the interval I, i.e., on any connected
component of S. The local maximization argument for a connected component is essentially
the same as for an isolated point. That is, one takes x to be the lower or upper endpoint
of a support component. If x is not a relative maximum, one finds a nearby point z and an
initial distribution that smears a small amount of probability mass past z, and shows that
the smeared mass never returns to the support component. �

Lemma 1. The partial differential equation (12) with boundary conditions (15) and initial
condition has a unique solution D(·, t) for all t > 0. The solution depends continuously on
the initial condition D0 ∈ D.

Proof of Lemma 1. We offer no independent proof of Lemma 1, but instead refer the
reader to [Smo94] for an existence and uniqueness result. It is straightforward but tedious to
extend that proof, which uses finite difference methods, to the present case. Our boundary
conditions (15) simplify some steps in the proof.�

Proposition 4. Let φ be a progressive distributed payoff function. Assume sign preserving
dynamics. Then, beginning from an arbitrary initial distribution, the trajectory converges
asymptotically to some invariant distribution D∗. Moreover, if an isolated invariant distri-
bution D∗ is a strict local maximum of µ, then D∗ is (locally asymptotically) stable.

Proof of Proposition 4: Let T = {D(·, t) : t ≥ 0} be the trajectory under given sign
preserving dynamics beginning from an arbitrary point D(·, 0)∈D. Lemma 1 guarantees that
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T is a well defined subset of D. By the Banach-Alaoglu Theorem (e.g., [Rud73], p.66), D is
compact in the weak-* topology. Hence T has a limit point D∗∗ ∈ D. Suppose, contrary to
the Proposition, that D∗∗is not invariant. Since φ is progressive and the dynamics are sign
preserving, µ is strictly increasing on the trajectory beginning at D∗∗. Hence for some time
t0 > 0 and some ε> 0, the mean payoff exceeds µ(D∗∗)+ε for all t > t0. By the continuity
of µ in D (following from the definitions of the weak*-topology and of µ) and the continuity
of points on a trajectory in the initial condition (from Lemma 1), we see that µ achieves
the value µ(D∗∗)+ε/2 by time t0 on a trajectory beginning at a point of T sufficiently close
to D∗∗, say at D(·, t1). Now progressivity implies that µ is bounded below by µ(D∗∗)+ε/2
on the tail of T . In particular, at the limit point D∗∗ we have µ(D∗∗) ≥ µ(D∗∗)+ε/2, a
contradiction. Hence D∗∗is invariant. Now suppose that D∗ and D∗∗ are both limit points of
T . The previous argument shows that both points are invariant and µ(D∗) = µ(D∗∗). The
continuity of the solution in initial conditions (from Lemma 1) now implies that the distance
between D∗ and D∗∗ can be made arbitrarily small. Therefore D∗ = D∗∗, i.e., the trajectory
T converges asymptotically to D∗.

For the last part of the Proposition, let D∗ be a strict local maximum and take its neigh-
borhood V small enough that it contains no other invariant distributions or local max-
ima. Since µ is continuous, it attains a maximum k <µ(D∗) on the boundary of V . Let
U = V ∩{D ∈ D : µ(D) > k}. Progressivity already implies that no trajectories begin-
ning in U ever leave V. To complete the proof, we need only establish asymptotic stability,
i.e., that D∗ is the unique limit point of any trajectory beginning in U . But the argu-
ment of the previous paragraph establishes that any limit point D∗∗ must be invariant. By
construction, D∗ is the only invariant distribution in V . Hence D∗∗ = D∗ .�

Proposition 5. Let φ define one of the following: (a) a game of common interest; (b) a
basic congestion game; (c) a nonstrategic game. Then φ is progressive, and the local maxima
of µ are stable distributions under sign preserving dynamics for φ.

Proof of Proposition 5: (a) Let ρ be a density function with ρ(0, t) = ρ(1, t) = 0. We
need only show that the function

µ(t) =

∫ 1

0

∫ 1

0

g(x, y)ρ(x, t)ρ(y, t)dxdy

is strictly increasing except at invariant distributions, because distributions defined by such
density functions are a dense subset of D. Using the evolution equation (14) and integrating
by parts, the time derivative of µ is

·
µ=

∫ 1

0

∫ 1

0

∫ 1

0

gx(x, y) [gx(x, z) + gx(z, x)] ρ(x, t)ρ(y, t)ρ(z, t)dxdydz, (48)

where the surface terms from the parts integrals are zero.

For symmetric g(x, y) as in a game of a common interest, the terms in the integrand of (48)
are equal, and we may write
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·
µ= 2

∫ 1

0

ρ(x, t)

[∫ 1

0

gx(x, y)ρ(y, t)dy

]2

dx ≥ 0, (49)

with strict inequality except when EDg = 0 on Suppρ = SuppD. By Proposition 3 we have
strict inequality except at an invariant distribution, and the payoff function therefore is
progressive.

(b)The proof for a basic congestion game is similar. Note that basic congestion games can be
scaled so that φ(x, D(·, t)) = −ρ(x, t). Thus we have φx = −ρx , and (∂/∂t)φ(x, D(·, t)) =
−ρt = [φxρ]x = −[ρxρ]x, using the continuity equation (14) for the next to last equality.
Hence the second term in (22), the ”indirect effect,” is∫ 1

0

(∂/∂t)φ(x, D(·, t))ρ(x, t)dx= −
∫ 1

0

[ρxρ]xρ(x, t)dx =

∫ 1

0

[ρxρ]ρxdx =

∫ 1

0

ρρ2
xdx ≥ 0,

(50)
where we integrate by parts in the central equality. Recalling that [ρx(x, t)]2 = φ2

x,we con-
clude that the indirect effect as well as the direct effect is positive except at invariant distri-
butions, where it is zero. Hence the payoff function is progressive.

(c)In a non-strategic game, φ is independent of D(·, t), and we have (∂/∂t)φ(x, D(·, t)) = 0.

Hence the second term in (22) is zero and
·
µ is given by (23). As already noted, (23) is

positive except at invariant distributions. Hence the payoff function is progressive. �

Proposition 6. Let D∗ be an invariant distribution under sign-preserving dynamics for a
locally repulsive distributed payoff function φ. Then D∗ has no atoms.

Proof of Proposition 6: Suppose to the contrary that the limit D∗ has an atom of mass
a > 0 at x ∈ [0, 1]. Since the total mass is finite, there are points y arbitrarily close to x at
which D∗ has no atoms, and D∗ is a fortiori K-denser at x than at such y for any K > 1.
By the locally repulsive property, φ(·, D∗) is greater at such y than at x. Hence φ does not
achieve a local maximum on its support, so by Proposition 3 we conclude that D∗ is not
invariant. �

Lemma 2. Suppose φ is monotonous. Then for all D ∈ D:
(a) The function φ(·, D) has a unique maximum x∗ = B(D) ∈ [0, 1],
(b) B is continuous on D, and
(c) sgnφx(y, D) = sgn[B(D)− y] for all y ∈ [0, 1].

Proof of Lemma 2: Redefine B(D) as sup{x ∈ [0, 1] : φx(x, D) > 0}. Then B inherits
its continuity in D from φx. Since φx(·, D) is strictly decreasing, it must be > 0 (resp. < 0)
for y < B(D) (resp y > B(D)). Thus (b) and (c) are immediate, and it suffices for (a) to
show that for y 6= x∗ = B(D) we have φ(x∗, D) > φ(y, D). Suppose to the contrary that
0 ≤ φ(y, D)− φ(x∗, D). If φx is continuous then by the mean value theorem, the right hand
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side is (y− x∗)φx(z, D) for some z between y and x∗. But the last expression is the product
of two non-zero terms of opposite sign when y 6= x∗, by part (c). Hence the expression is
negative, a contradiction that proves the result. Discontinuities in φx can be dealt with by
smooth approximations, as in the proof of Proposition 3. �

Proposition 7. PNE(φ) = Diag ∩Gr[b], and if φ is monotonous then PNE(φ) 6= ∅.

Proof of Proposition 7: The geometric characterization PNE = Diag ∩ Gr[b] is im-
mediate from the definitions. To prove existence, note that b(y), and hence b(y) − y, are
continuous functions by the previous lemma. We have b(y)−y ≥ 0 at y = 0 and b(y)−y ≤ 0
at y = 1. Hence, by the intermediate value theorem b(y)− y has at least one root y∗. Thus,
every monotonous distributed payoff function has at least one downcrossing y∗ ∈ PNE.�

Lemma 3. Let y∗ ∈ PNE be a downcrossing, and let D(x, 0) = θ(x− y). For y sufficiently
close to y∗, the distribution D(x, t) converges to θ(x − y∗) as t → ∞ under sign preserving
dynamics for a monotonous payoff function.

Proof of Lemma 3: In the case y < y∗ we have y < b(y) since y∗ is a downcrossing and
thus φx(y, θ(·− y)) > 0 by Lemma 2. For sign preserving dynamics we then have v(y, t) > 0.
Indeed, the definition of sign preservation implies that for t > 0 the support of D(·, t) is
contained in the interval [y(t), y∗], where the lower bound y(t) > y(0) = y increases in t at a
rate commensurate with φx(y

∗, θ(· − y∗) > 0. Hence the distribution converges to θ(· − y∗)
as t →∞. The case y > y∗ is entirely analogous.�

Proposition 8. Let D∗ be an invariant distribution under sign preserving dynamics for
a monotonous distributed payoff function φ. Then D∗ is a pure Nash equilibrium. If D∗ is
also stable, then it is supported at a downcrossing. At least one downcrossing exists.

Proof of Proposition 8: Let D∗ be invariant. By Lemma 2(c) we have φx < 0 for
y > B(D∗) and φx > 0 for y < B(D∗). Hence by Proposition 3, the support of D∗ consists
of the single point B(D∗). From the definition of B in the proof of Lemma 2 we see that D∗

is indeed a PNE supported at x∗ = B(D∗). If D∗ is stable, then by Lemma 3 x∗ must be
a downcrossing. The last part of the proof of Proposition 7 established the existence of at
least one downcrossing. �

Proposition 9. Let g be a twice continuously differentiable symmetric two-player fitness
function, and let D∗ be a clumped distribution supported at a point x∗ ∈ [0, 1]. If D∗ is
a NE stable under sign preserving dynamics for φ = Eg, then conditions (35 - 37) hold.
Conversely, if conditions (35 - 37) hold with strict inequalities, then D∗ is a pure NE, and
x∗ is a downcrossing.

Proof of Proposition 9: Suppose D∗ is an NE stable under sign preserving dynamics for
φ = Eg. The Nash property implies that g(·, x∗) is maximized at x = x∗, so by smoothness
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we have (35 - 36). By Proposition 8 we know that x∗ is a downcrossing. Hence, 1 > b′(x∗) =
−gxx(x

∗, x∗)/gxy(x
∗, x∗), where the last equality follows from the implicit function theorem

and the characterization of b as the locus gx(x, x) = 0. But cross multiplication of the last
inequality yields (37). Conversely, suppose conditions (35 - 37) hold with strict inequalities.
The first two conditions imply that the Nash property holds locally, hence (by monotony)
x∗ ∈ PNE(φ). Given (37), it follows immediately that 1 > b′(x∗), and we conclude that x∗

is a downcrossing.�

13.3 Derivations

1. Derivation of Equation (6).

We write (2,3) as an autonomous nonlinear system in the vector of variables ρ. Define the
discrete derivative

S =


−1 0 0 0 0
1 −1 0 0 0
0 1 ... 0 0
0 0 ... −1 0
0 0 0 1 −1

 . (51)

.

By the definitions of the expected payoff ϕ = gρ and the first differences X = Sϕ, we have
X = Sgρ. Equation (2) therefore takes the autonomous form

·
ρ= M(Sgρ) · ρ. (52)

By construction, the pairwise payoff g = S−1, so that X = Sgρ = ρ. Given X = ρ, only the
terms X+ contribute in (3), and the evolution matrix in (52) is given by

M =



0 ρ1 0 0 0 0 0
0 −ρ1 ... ... ... 0 0
0 0 ... ρk 0 0 ...
0 0 ... −ρk ... 0 0
0 0 0 0 ... ρn−1 0
0 ... 0 ... ... −ρn−1 ρn

0 0 0 0 0 0 −ρn


. (53)

Substituting (53) into (52) gives the coupled Riccatti system (6).

2. Solution of (6) for n=2. This system is solvable in the three-component case n = 2. From
(6), we have, by inspection,

ρ2(t) =
1

t + 1
ρ2(0)

. (54)
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The Riccatti equation
·
ρ1= −ρ2

1 + ρ2
2 integrates to

ρ1(t) = ρ2(t)
α+ + kα−[ρ2(t)]

√
5

1 + k[ρ2(t)]
√

5
, (55)

where α± = (1±
√

5)/2, and

k = −ρ2(0)
−
√

5ρ1(0)− α+ρ2(0)

ρ1(0)− α−ρ2(0)
. (56)

By probability conservation, ρ0(t) = 1− ρ1(t)− ρ2(t).N

3. Derivation of equation (17).

Equation (16) yields the gradient φx = ax̄(t)− x. The continuity equation then becomes

ρt = −[(ax̄(t)− x)ρ]x. (57)

To solve (57), first linearize by taking the spatial expectation of both sides, obtaining, after
straightforward algebra,

dx̄/dt = (a− 1)x̄, (58)

which gives
x̄(t) = x̄(0)e(a−1)t. (59)

Inserting (59) into (57), we have the linear partial differential equation

ρt = ρ +
[
x− ax̄(0)e(a−1)t

]
ρx, (60)

which can be solved by standard textbook techniques, see, e.g., [Cop75]. In particular, the
general solution of (60) takes the form

ρ = etF [k(x, t)], (61)

where F (k) is a function of k fixed by the initial condition F (k) = ρ(k, 0), with spatial mean
x̄(0). On inserting (61) into (60), we observe that the function k(x, t) may be chosen to be
any particular solution of

kt = [x− ax̄(0)e(a−1)t]kx, (62)

with k(x, 0) = x. We choose k(x, t) to be a solution of the characteristic equation dx/dt =
x− ax̄(0)e(a−1)t, viz.

k(x, t) = xet + x̄(0)(1− eat). (63)

Substituting (63) into (61), we confirm that the solution to (57) is equation (17) of the text.N

4. Derivation of equations (32, 33).
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For algebraic convenience we define the new variables z = 4x− 1, v = 4ρ, τ = 3t. In terms of
these quantities, the new normalized density v(z, τ) is defined on the interval [−1, 3], with
initial support on [−1, 1]. Equations (28-31) now read

vτ = −2

3
vvz (64)

ξ = z − 2

3
vτ, v = v0(ξ), (65)

v = v0(z −
2

3
vτ), 0 ≤ τ ≤ τ∗ (66)

v0(z) =
3

4
(1− z2),−1 ≤ z ≤ 1; v0(z) = 0, 1 ≤ z ≤ 3. (67)

From (66) and (67) the continuous solution for the density is

v(z, τ) =
−1 + τz +

√
1− 2τz + τ 2

2
3
τ 2

, 0 ≤ τ ≤ 1 (68)

A shock wave develops at the earliest time for which the expression under the radical in (68)
becomes zero. At that time the spatial derivative vz becomes singular. The shock occurs at
z = 1, the right-hand edge of the initial support, at time τ = τ∗ = 1.

For τ > 1 the inviscid wave “breaks,” and the density becomes multi-valued with no clear
meaning. One can retain, nevertheless, a single valued density for τ > 1 by allowing a weak
solution with a shock discontinuity moving to the right. The standard technique [Lax72]
is to impose mass conservation on the discontinuity via the equal area, Rankine-Hugoniot
condition

1

2
[v0(ξ+) + v0(ξ−)] (ξ+ − ξ−) =

∫ ξ+

ξ−

v0(ξ)dξ, (69)

as well as a pair of continuity conditions on the medium, which here read

zs = ξ+ = ξ− +
2

3
v0(ξ−)τ. (70)

Since there is partial initial support, v0(ξ+) = 0, and on using v0(ξ−) = 3
4
(1 − ξ2

−), (69)
becomes
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1

2
v0(ξ−) (ξ+ − ξ−) =

∫ 1

ξ−

v0(ξ)dξ. (71)

Carrying out the integral in (71) using the initial condition (67),

ξ+ − ξ− =
2
3
(1− ξ−)(2 + ξ−)

1 + ξ−
. (72)

From (70) and (72), the shock occurs at time

τ(ξ−) =
4

3

(2 + ξ−)

(1 + ξ−)2
. (73)

Inverting (73), we have

ξ−(τ) =
2

3τ

(
1 +

√
1 + 3τ

)
− 1. (74)

It follows that the shock has strength

v(ξ−) =
3(
√

1 + 3τ − 2)

(
√

1 + 3τ − 1)2
, (75)

and position

zs(τ) =
7
3

+ 2τ − 5
3

√
1 + 3τ

√
1 + 3τ − 1

, (76)

as given in the text.

Alternative derivation of (73). One may also impose probability conservation directly, viz.

∂

∂τ

∫ zs(τ)

−1

v(z, τ)dz = 0. (77)

Because the position of the shock is zs = ξ+, and its strength is v(zs, τ) = v0(ξ−), we have,
using vτ = −1

3
(v2)z (Cf.(64)) in (77),
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dzs

dτ
=

1

3
v0(ξ−). (78)

On the other hand, differentiating (70) gives

dzs

dτ
=

dξ−
dτ

+
2

3
v0(ξ−) +

2

3
v′0(ξ−)τ

dξ−
dτ

. (79)

From (78) and (79),

dξ−
dτ

= −1

4

(
1− ξ2

−
)

1− τξ−
, (80)

which is a form of Abel’s differential equation of the second kind. On exchanging dependent
and independent variables, we obtain a linear inhomogeneous ODE for τ(ξ−). This integrates
easily, and we again obtain (73). N

References

[AM94] Peter Abrams and Hiroyuki Matsuda. Evolution of traits that determine ability
in competitive contests. Evolutionary Ecology, 8:667–681, 1994.

[AMH93] Peter Abrams, Hiroyuka Matsuda, and Yasushi Harada. Evolutionarily unstable
fitness maxima and stable fitness minima of continuous traits. Evolutionary
Ecology, 7:465–487, 1993.

[ASS83] Phillipe Artzner, Carl Simon, and Hugo Sonnenschein. Convergence of My-
opic Firms to Long-Run Equilibrium via the Method of Characteristics, volume
264 of Lecture Notes in Economics and Mathematical Systems, pages 157–183.
Springer-Verlag, Berlin Heidelberg New York Tokyo, 1983.

[Bin87] Kenneth Binmore. Modeling rational players part 1. Economics and Philosophy,
3:179–214, 1987.

[BS94] Kenneth Binmore and Lawrence Samuelson. Muddling through noisy equilibrium
selelction. unpublished manuscript, 1994.

[Bur21] John B. Bury. The idea of progress; an enquiry into its origin and growth.
Macmillan and Co., London, 1921.

[Cop75] E. T. Copson. Partial Differential Equations. Cambridge University Press,
London, 1975.

45



[Cra95] Vincent Crawford. Adaptive dynamics in coordination games. Econometrica,
63:103–144, 1995.

[Dar59] Charles Darwin. On the origin of species by means of natural selection. J.
Murray, London, 1859.

[EA83] I. Eshel and E. Akin. Coevolutionary instability of mixed nash solutions. J.
Math. Biol., 18:123–134, 1983.

[Edg97] F. Edgeworth. La teoria pura del monopolio. Giornale degli Economisti, 40:13–
31, 1897.

[EM81] Ilan Eshel and Uzi Motro. Kin selection and strong evolutionary stability of
mutual help. Theoretical Population Biology, 19:420–433, 1981.

[Esh83] I. Eshel. Evolutionary and continuous stability. J. Theor. Biol., 103:99–111,
1983.

[FK88] Drew Fudenberg and David Kreps. Learning and Equilibrium in Games. 1988.

[FL95] Drew Fudenberg and David Levine. Theory of Learning in Games. unpublished
book manuscript, 1995.

[Fra85] Robert Frank. Choosing the right pond: Human Behavior and the quest for
status. Oxford University Press, New York, 1985.

[FT91] Drew Fudenberg and Jean Tirole. Game theory. MIT Press, Cambridge, Mass.,
1991.

[GP74] Victor Guillemin and Alan Pollack. Differential Topology. Prentice-Hall, Engle-
wood Cliffs, NJ, 1974.

[Hot29] Harold Hotelling. Stability in competition. Economic Journal, 39:41–57, 1929.

[HS88] Josef Hofbauer and Karl Sigmund. The Theory of Evolution and Dynamical
Systems. Cambridge University Press, New York, 1988.

[Kau93] Stuart A. Kauffman. The origins of order : self-organization and selection in
evolution. Oxford University Press, New York, 1993.

[KMP96] Ken Kollman, John H. Miller, and Scott E. Page. Political institutions and
sorting in a tiebout model. Unpublished manuscript, Cal Tech, Division of
Humanities and Social Sciences, May 1996.

[Lan76] Russell Lande. Natural selection and random genetic drift in phenotypic evolu-
tion. Evolution, 30:314–334, 1976.

[Lan82] Russell Lande. A quantitative genetic theory of life history evolution. Ecology,
63:607–615, 1982.

46



[Lax72] Peter Lax. The formation and decay of shock waves. American Mathematical
Monthly, 66:227–241, 1972.

[Lew92] Richard Lewontin. Inside and outside: gene, environment and organism. Clark
University Press, Worcester, MA, 1992.

[Log94] J. David Logan. An Introduction to Nonlinear Partial Differential Equations.
Wiley-Interscience, New York, 1994.

[Lom97] Bjorn Lomborg. Adaptive parties in a multipart multidimensional system with
imperfect information. In UCLA Computable Economics Conference, Aarhus,
Denmark, 1997. University of Aarhus Political Science Department.

[LS94] Dan Levin and J. L. Smith. Equilibrium in auctions with entry. American
Economic Review, 84:585–599, 1994.

[LS96] Russell Lande and Susan Shannon. The role of genetic variation in adaptation
and population persistence in a changing environment. Evolution, 103:434–437,
1996.

[Mai92] George Mailath. Introduction: Symposium on evolutionary game theory. Journal
of Economic Theory, 57:259–277, 1992.

[MGM+95] J. A. J. Metz, S. A. H. Geritz, G Meszena, F.J.A.Jacobs, and J.S. van Heer-
waarden. Adaptive dynamics: A geometrical study of the consequences of
nearly faithful reproduction. Working Paper 95-99, IIASA, Laxenberg, Austria,
September 1995.

[Mil96] Igal Milchtaich. Congestion games with player-specific payoff functions. Games
and Economic Behavior, 13:111–124, 1996.

[MM95] Javier R. Movellan and James L. McClelland. Stochastic interactive process-
ing, channel separability, and optimal perceptual inference: An examination of
morton’s law. Technical Report PDP.CNS.95.4, University of California, De-
partment of Cognitive Science, San Diego, CA, December 1995.

[MS82] John Maynard-Smith. Evolution and the theory of games. Cambridge University
Press, New York, 1982.

[MS96] Dov Monderer and Lloyd Shapley. Potential games. Games and Economic
Behavior, 14:124–143, 1996.

[MSP73] John Maynard-Smith and G. R. Price. The logic of animal conflict. Nature,
246:15–18, 1973.

[Nag95] Rosemarie Nagel. Unraveling in guessing games –an experimental study. Amer-
ican Economic Review, 95:1313–1326, 1995.

[Rog95] Alan Rogers. Beating your neighbor to the berry patch. July 1995.

47



[Ros73] Robert W. Rosenthal. A class of games possessing pure-strategy nash equilbria.
International Journal of Game Theory, 26:65–67, 1973.

[Rud73] Walter Rudin. Functional Analysis. McGraw-Hill, New York, 1973.

[Sky86] Brian Skyrmes. Deliberational equilibrium. Topoi, 5:59–67, 1986.

[Smo94] Joel Smoller. Shock waves and reaction-diffusion equations. Springer-Verlag,
New York, second edition, 1994.

[Son82] Hugo Sonnenschein. Price dynamics based on the adjustment of firms. American
Economic Review, 72(5):1088–1096, 1982.

[Tay95] Peter Taylor. The selection differential in quantitative genetics and ess models.
August 1995.

[Tir88] Jean Tirole. The theory of industrial organization. MIT Press, Cambridge,
Mass., 1988.

[TJ78] Peter Taylor and Leo Jonker. Evolutionarily stable strategies and game dynam-
ics. Mathematical Biosciences, 40:145–156, 1978.

[To95] Theodore To. Risk and evolution. unpublished manuscript, St Andrews Univer-
sity Economics Dept, 1995.

[Veb99] Thorstein Veblen. The theory of the leisure class. MacMillan, London, 1899.

[Wei94] Jonathan Weiner. The beak of the finch : a story of evolution in our time. Knopf
- Random House, New York, 1994.

[Wei95] Jorgen W. Weibull. Evolutionary game theory. MIT Press, 1995.

[WFCB96] Donald Wittman, Daniel Friedman, Stephanie Crevier, and Aaron Braskin.
Learning liability rules. Journal of Legal Studies (in press), pages –, 1996.

[Wri49] Sewall Wright. Adaptation and selection. In L. Jepson, G. G. Simpson, and
E. Mayr, editors, Genetics, Paleontology, and Evolution. Princeton University
Press, 1949.

48


