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1 Introduction

Advances in mathematics in the 1960s made available a host of new modeling strategies for
all the sciences. The framework of global analysis applied to dynamical systems, calculus of
variations, partial differential equations of evolution type, game theory, and so on, brought
us catastrophe theory, chaos theory, complexity and simplexity, neural network theory, evo-
lutionary game theory, and others. The computer and computer graphic revolutions brought
new possibilities of computational modeling, simulation, and scientific visualization. Of all
the sciences, those with the greatest potential to benefit from these new methods are the
social, behavioral, and economic sciences.

Our proposed research will extend the class of models called evolutionary games and open it
to new applications in the social sciences. Evolutionary game models analyze strategic inter-
action over time. Equilibrium emerges, or fails to emerge, as players adjust their strategies
in response to the payoffs they earn. Thus far the models have mainly considered situations
in which players chose among only a few discrete strategies. Our extensions allow players to
choose within a continuous strategy space A.

In this setup, the current state is the distribution of all players’ choices over A. In any
particular application, the current state defines a payoff function on A, whose graph is called
the adaptive landscape. Players respond to the landscape in continuous time by adjusting
their strategies towards higher payoff. Hence the current state (the distribution of chosen
strategies) changes, and this in turn alters the landscape. The interplay between the evolv-
ing state and the landscape gives rise to nontrivial dynamics. In particular, when players
follow the gradient (steepest ascent in the adaptive landscape), the evolving state can be
characterized as the solution to a nonlinear partial differential equation, or equivalently, a
dynamical system on an infinite-dimensional space.

Our research is intended to advance the arts of mathematical modeling, computer simulation,
and scientific visualization of complex dynamical systems encountered in the social, behav-
ioral, and economic sciences. Many of these complex systems involve geometrical spaces of
strategies that have not yet been adequately treated.

Our specific motivation for geometric (continuous or lattice) strategy spaces is to model

1



the very common situation in which players actually have an n-dimensional continuum of
strategies. The application that we propose to develop in detail is that of financial markets
in which traders adjust portfolios consisting of n financial assets. The price and yield of each
asset depends on traders’ choices, and traders’ payoffs depend on the absolute and relative
performance of their portfolios. In a later section we sketch how this approach can give
insight into financial market bubbles and crashes, while remaining generally consistent with
modern finance theory. We will also consider a number of other social science applications,
such as political competition for votes, and products positioning by competing firms.

Our primary objectives are:

• to advance a mathematical theory, based on the concepts of global analysis, of a new
class of evolutionary game models, suitable for massively complex systems, and related
to agent-based models;

• to develop a software suite for fitting such a model to data from natural systems, for
simulating the model, and for visualizing the natural and simulated data; and

• to fully develop one application for financial markets, and to sketch several other
applications in the social sciences.

The expected significance is primarily the development and dissemination of new mathe-
matical methods for understanding human social behavior. As explained in the next section,
the project draws on insights and techniques from several separate mathematical traditions,
unifies and extends the ideas, and creates a mathematical toolkit that can tackle a wide
variety of new applications in the economic, behavioral and social sciences.

The broader impact will be be twofold. First, current communities of applied mathe-
maticians, economists, finance practitioners, and other social scientists will be exposed to
a new set of ideas and techniques that will extend their reach. Second, current and future
graduate students, and eventually undergraduate students, will have access to an appealing
set of tools and ideas. The proposed toolkit includes computer based models and computer-
graphic visualization with tremendous pedagogic value. New methods may attract a new
generation of social scientists, expanding interdisciplinary frontiers in new directions.

2 Present State of Knowledge

Nonlinear dynamics and complex behaviours in simple systems and in networks have enjoyed
increasing interest in the past two decades. After the pioneering works on cybernetics,
catastrophes, chaos, fractals, and neural networks since the Second World War, a wave
of new methods for mathematical modeling, computer simulation, and computer-graphic
visualization have emerged.
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2.1 Complex systems

Complexity, synchronization, self-organization and criticality, analog neural networks, ge-
netic algorithms, games, and agent-based models – all have their special-interest groups,
societies, journals, and so on. Our proposed research draws on modeling strategies from
this burgeoning interdisciplinary frontier. In particular, our nearest neighbors are games,
complex systems, and neural networks.

These models are all special cases of complex dynamical systems. Formally, a complex dy-
namical system comprises a directed graph of simple dynamical systems, adaptively linked
with coupling functions. As such, they are actually large-scale dynamical systems with con-
trol parameters, so nonlinear dynamical systems theory (chaos theory) is their parent branch
of pure mathematics. For this reason, our analytic machinery comes primarily from chaos
theory, and its parent in turn, global analysis (Abraham, 1996; www.santafe.edu).

Agent-based models and neural networks are structures of this sort, while games (especially
evolutionary games) have a somewhat different personality. Our research methods thus draw
on analytical techniques of global analysis – such as bifurcation theory, fractal dimension, at-
tractor reconstruction, Lyapounov exponents, etc – as well as computational methods devel-
oped particularly by the dynamical systems community – such as Stella, Vennsim, Madonna,
and Phaser, as well as creations of the computer science community – such as Swarm, Star-
logo, and Netlogo – and general purpose math tools – such as Maple, Mathematica, and
Matlab. (www.mathworks.com)

2.2 Agent-based models

The structures that we will be developing in this project interpolate between evolution-
ary games and agent-based models, and thus we may make use of software environments
created for agent-based modeling, such as Swarm and Netlogo. Netlogo is many advan-
tages for our purpose. It is freeware; it is widely used in universities; it is easily converted
to Java applets for distribution via the World Wide Web; and it accommodates experi-
ments with human subjects and with students in the classroom. Thus it combines fea-
tures for research and for teaching with graphical user interfaces and ease of distribution.
(www.econ.iastate.edu/tesfatsi/ace.htm)

While we may do some of our experimental work with our own programs written in C or
scripts for Matlab, we would certainly want to prepare applets in Netlogo for our website,
conference presentations, and the like. It is interesting to note that the Netlogo home website
features some interesting models of financial markets, proving the feasibility of Netlogo for
our work. (ccl.sesp.northwestern.edu/netlogo)
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2.3 Neural networks

A chief feature of our approach is learning. Players of evolutionary games adjust their
strategies to improve their payoffs, and in the adaptive cases we will study, the learning
algorithms are comparable to those of analog neural networks. The Hopfield network comes
to mind as a close relative of our approach. In the more advanced part of our program we
would explicate the connections between our modeling strategy and the learning algorithms
of neural network theory (Haykin, 1999).

2.4 Games

Game theorists since Von Neumann and Morgenstern (1944) and Nash (1951) have studied
strategic interactions among a set of players. Evolutionary game theory – first introduced by
Maynard Smith and Price (1973), Taylor and Jonker (1978), Zeeman (1980), and Maynard
Smith (1982) – focuses on adjustment dynamics using three basic principles.

• monotone: higher payoff strategies displace strategies with lower payoff ( ”survival of
the fittest”);

• inertial: the player population takes real time to change behavior (”evolution not
revolution”); and

• game against nature (GAN): players don’t try to influence other players’ choices (”nat-
ural selection”).

These principles are consistent with complex adaptive systems theory and with general
dynamical systems theory, but are more specific. They mark the boundaries to neighboring
branches of game theory. Traditional static game theory assumes no behavioral inertia
and assumes complete rationality, a very strict version of monotonicity. Repeated game
theory (e.g., Fudenberg and Tirole, 1991, Chapter 5) studies ongoing interactions where (a)
your current choice affects other players’ choices and hence your future opportunities, and
(b) you take this into account in making your current choice. The game against Nature
(GAN) principle holds when either (b) fails because you can’t reliably assess the indirect
future consequences of your current behavior, or (a) fails because no single individual has
an appreciable effect on others, as exemplified in the standard price taking assumption in
competitive markets.

Evolutionary games were originally aimed at biological applications (e.g., Hofbauer and
Sigmund, 1988) but soon began to influence game theorists. Early work includes Binmore
(1987), Fudenberg and Kreps (1988) and Friedman (1988, 1991). Evolutionary games enjoyed
a vogue among theorists as witnessed by textbooks such as Weibull (1995) and Fudenberg and
Levine (1998); monographs such as Cressman (1992), Vega-Redondo (1996), and Samuelson
(1997); and special issues of Games and Economic Behavior in 1991 and 1993, and Journal
of Economic Theory in 1992.
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The economic and social sciences applications of evolutionary game theory now include
isolated articles in international trade (Friedman and Fung, 1996), environmental policy
(Dijkstra and De Vries, 2002; McGinty 2002), and several other fields, but the impact on
applications clearly lags the impact on theory. Friedman (1998) argues that the evolutionary
approach promises distinctive insights and implications in substantive economic applications,
but that the theory requires focused development. In particular, the extension of evolutionary
game theory from a finite, unordered set of strategies to a geometric space of strategies will
empower a host of new applications to economics, and to all the social sciences.

There are already a few papers that treat evolutionary games with continuous strategy
spaces. Friedman and Yellin (1997, 2000) lay the groundwork. Bomze (1990, 1991) and
Oechssler and Riedl (2001, 2002) extend replicator dynamics to continuous strategy spaces,
and Cressman and Hofbauer (2003) further develop the approach and connect it to recent
work in theoretical biology. However, as explained in the next section, their approach has
a different range of applicability than ours and cannot be interpreted in terms of adaptive
landscapes.

3 Plan of Work

We now describe our new modeling strategies in three steps, from well-known to new evolu-
tionary games: replicator dynamics, adaptive landscapes, and adaptive lattices.

3.1 Finite strategy sets and replicator dynamics

A basic evolutionary game concerns a single population of players, each with the same finite
set of pure strategies. The instantaneous state of the system consists of the proportion of the
population playing each of the pure strategies. The state evolves in continuous time, following
some dynamical process that is monotone, inertial and GAN. In biological applications,
the players are born, reproduce, and die. Each child has the same strategy as its parent.
Meanwhile, players meet at random and play a fixed two-player game whose payoffs represent
the players’ fitness (number of offspring). An alternative narrative, more attuned to social
science applications, is that the players learn and tend to switch to higher payoff strategies.

The mathematical description is as follows. Let k be an integer greater than one, and let
∆ ⊂ Rk be the unit simplex, whose vertices ei = (0, ..., 0, 1, 0, ..., 0), i = 1, . . . , k represent
the pure strategies. The simplex will be the state space of our dynamical system. That is,
a state s = (s1, . . . , sk) is a tuple of population shares, where each si ≥ 0, and

∑
si = 1.

A player choosing strategy i receives payoff f(ei, s) when the state is s ∈ ∆. The dynamics
are then given by a vectorfield on ∆ that depends on the payoff function f . The standard
biological example is replicator dynamics, given by ṡi = (f(ei, s) − f(s, s))si. That is, the
growth rate for each population share ṡi/si is its fitness f i(s) relative to the population
average f(s, s) =

∑
sjf(ej, s).

More general dynamics are helpful in social science applications. For example, sign-preserving
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dynamics simply require that the share growth rates have the same sign as the relative fit-
nesses f(ei, s)− f(s, s), and are consistent with the principles of monotonicity and inertia.

In most of the literature it is assumed that the fitness function f(x, s) is linear in both
arguments. This is consistent with the biological interpretation that players meet at random
to play a fixed two-player game, but is too restrictive for some biological applications and
the more interesting social science applications. Here we use ”playing the field” models with
payoff functions f that are non-linear (but smooth) in the state variable s.

It is conceptually straightforward to extend to multiple populations. For example, in biology
one might have separate strategy sets for males and females, and in economics one might
have separate strategy sets for buyers and sellers. The state s now specifies the strategy
shares in each population. Fitness is computed separately for each population but in general
depends on the entire state s.

3.2 Adaptive landscapes

Building upon the approach just described, we may now describe the main target of our
project, the evolutionary game with a geometric (continuous) space of actions.

The narrative description of a basic adaptive landscape again concerns a population of play-
ers, each with the same space of strategies, but the space now is at least one-dimensional
and continuous. The instantaneous state of the system consists of a probability measure on
the strategy space that describes the population distribution of chosen strategies. A player’s
fitness (payoff) depends on her choice of strategy, as well as on the current state of the entire
system. From the player’s perspective, fitness looks like a landscape in which she seeks to go
uphill.1 As play evolves over time, all players continuously adjust their strategies to increase
their fitness, so the population distribution changes, and consequently the landscape morphs.
A player’s fitness changes as the direct result of her own actions, and also indirectly as the
state evolves. The dynamics arise from this interplay between state and landscape.

The mathematical description of the basic landscape model is as follows. Let A = [0, 1], the
unit interval, be the space of strategies, and let D be the space of all probability measures
(that is, cumulative distributions) on A, with the weak-star topology. D is the state space
for this model, an infinite-dimensional simplex. The fitness for any player choosing strategy
x ∈ A when the current state of the game (distribution of all players’ strategies) is D ∈ D,
is denoted by φ(x, D). The application dictates a particular fitness function φ : A×D → R.
For any player holding strategy x, the function A → R; x 7→ φ(x, D) with D held constant,
is the instantaneous fitness landscape for that player. It depends on D only, and we think of
it as a landscape, or graph in A×R.

The dependence of φ on D can take many forms. In some applications it is the expectation

1The landscape metaphor goes back to Sewall Wright (e.g., 1949) and has been revived by Stuart Kauf-
man (e.g., 1993). Wright considered low dimensional continuous landscapes and Kaufman considers high
dimensional sequence spaces of discrete-valued traits. Neither considers the dynamically changing (i.e.,
distribution dependent) landscapes examined here.
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φ(x, D) =
∫

g(x, y)dD(y) of some two-player game payoff function g(x, y). In some (possibly
oversimplified) biological applications the dependence is only via the mean strategy µD =∫

ydD(y). In fluid dynamics applications it depends only on the local value D(x) at the chosen
strategy x (e.g., Witham, 1974). However, in our featured application, the dependence on
the current state D is quite nonlinear and arises from market-clearing prices.

Landscape dynamics are given as a vectorfield (defined almost everywhere) on the infinite-
dimensional simplex. A general expression is

Dt(x, t) = Ψ(x, D, φ) (1)

where D(x, t) is the cumulative distribution function over x ∈ A for the state at time t, and
Dt denotes the partial derivative of D(x, t) with respect to t.

Consistent with the inertial principle of evolutionary games and with Darwin’s dictum Natura
non facit saltum, we assume that individual adjustment is continuous. That is, a discrete
change in a player’s strategy x takes a positive amount of time. This restriction might
seem innocuous but it is violated by generalized replicator dynamics and other dynamics
that don’t respect the ordering of the action set A = [0, 1]. (The intuition for replicator
dynamics is that individuals never adjust, and dynamics arise entirely from differing birth or
death rates at different strategies. Apparent jumps occur because new births don’t generally
appear at the same location as recent deaths.)

Consistent with the monotone principle of evolutionary games, we assume that the direction
of adjustment is given by the sign of the gradient, i.e., uphill in the fitness landscape. If
also the adjustment speed is proportional to the gradient φx = ∂φ/∂x, we have a gradient
adjustment system. In this case dynamics obey the master equation,

Dt(x, t) = −φx(x, D)Dx(x, t) (2)

where Dx denotes the partial derivative of D(x, t) with respect to x. This nonlinear partial
differential equation simply states that probability mass is conserved: the rate of change
Dt(x, t) in population mass to the left of any point x is equal to the (negative of the rightward)
flux past that point. The flux is the product of the density ρ = Dx and the velocity given
by the gradient φx.

Finally, we note that the action space might be n-dimensional, and the cases n = 2 and
n = 3 provide for periodic and chaotic attractors as dynamic equilibria for an adaptive
evolutionary game. Connecting with the paradigms of oscillator theory and chaos theory in
this way opens up a host of new social sciences applications.

3.3 Adaptive lattices

Without going into detail, the adaptive lattice system is identical to the adaptive landscape
system, except that the continuous space of strategies, A, is replaced by a regular lattice
of points, K in A. This seems, at first, identical to the basic model above. However, here
we may carry over the geometry of A to the finite subset, K. This will always be the case
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when we wish to simulate an adaptive landscape on a digital computer. These systems
were introduced in Friedman and Yellin (1997) for simulation and analysis, under the name
discrete gradient dynamics.

The category of adaptive lattice games is closely related to other modeling strategies for
complex dynamical systems. For example, if the discrete action space is regarded as a
physical substrate, the adaptive lattice system becomes a special type of agent-based model,
in which the global distribution of agents plays a dynamical role.

In our case, the lattice is a discretized form of the continuous space of actions. Thus, the
choice of an action or strategy by a player or agent may be considered as a motion of the
player over the lattice. The inertial principle implies that the transition matrix for the
adaptive lattice is tri-diagonal. This interpretation puts our discretized adaptive lattice
model exactly in the context of agent-based models, permitting direct programming of our
models in the environment of Netlogo, for example.

Whether programmed in Matlab or Netlogo, the computer graphic features of these pro-
gramming environments greatly facilitate the visualization of the model as it runs. In the
case of a one-dimensional or two-dimensional action space, both environments have extensive
graphics capabilities and are capable of animated representations of the evolutionary game
in play. In the three-dimensional case, Matlab has an advantage.

3.4 Specific research agenda

Having laid out the context and its motivation, we may now be more specific about the
project. We propose to work upwards from a specific application to financial markets to
describe a class of adaptive landscape games sufficiently but not overly general, to reduce
these to appropriate adaptive lattice games, to create software tools for their simulation and
visualization, and to fit models to historical data from actual markets.

The software tools we envision might consist, for example, of prototype graphical user inter-
faces and computational scripts written in a common mathematical modeling environment,
such as Matlab, Mathematica, Maple, or Vennsim. While built specifically for our exem-
plary financial market application, these would be easily adaptable for different modeling
exercises, and thus reusable by us and by other researchers.

3.5 Consumption Dynamics

Veblen consumption is a good illustrative example because it has already been worked out
(Friedman, 2001; Friedman and Yellin, 2000) and because it contains key elements of the
financial market application. Thorstein Veblen (1899) popularized the idea that some goods
and services (think of Hummers or seldom-used second homes) are consumed largely to
gain status, a theme pursued more recently by authors such as Duesenberry (1949), Frank
(1985) and Ljundqvist and Uhlig (2000). Such consumption has the desired effect only to
the extent that it exceeds the conspicuous consumption of other people, i.e., its utility is
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rank-dependent.

Consider a single population of consumers with identical incomes. Each consumer chooses a
fraction x ∈ [0, 1] of income to allocate to ordinary consumption, and allocates the remaining
fraction 1 − x to rank dependent consumption. The state is the cumulative distribution
function D(x) of ordinary consumption. Assume standard direct utility c ln x from ordinary
consumption x, where the parameter c ≥ 0 represents the relative importance of ordinary
consumption. Suppose that rank dependent utility arises from envy, i.e., I compare my rank-
dependent consumption 1− x to everyone else’s and am unhappy to the extent that it falls
short. The shortfall is min{0, y− x} when your rank dependent consumption is 1− y. After
integrating the expected shortfall by parts, one verifies that overall expected utility is

φ(x, D) = c ln x−
∫ x

0

D(y)dy, (3)

with gradient φx = c/x−D(x).

Figure 1 shows two landscapes with c = 0.1 defined by this payoff function for two different
initial distributions. In Figure 1A, the distribution D is uniform on A = [0.0, 1.0]. In Figure
1B, the distribution D is uniform on A = [0.9, 1.0].

Dynamics are governed by the Master Equation (2). Insert the gradient into (2) to obtain
the partial differential equation

Dt = Dx[D − (c/x)]. (4)

Friedman and Yellin (2000) show that from an arbitrary initial distribution D(x, 0) there is
a unique solution D(x, t) to (4), and that as t →∞ the solution converges to the degenerate
(or Dirac delta) distribution at some point x̃ ∈ [0, 1] whose value depends on the initial
distribution and the parameter c.

For our purposes the transient dynamics are especially interesting. To illustrate, suppose c =
0 and the initial distribution is D(x, 0) = 3x2− 2x3, i.e., the initial density is the symmetric
unimodal (single-peaked) function ρ(x, 0) = 6x(1 − x). It can be shown analytically that
D(x, t) has a continuous unimodal density ρ(x, t) for t ∈ [0, 2/3). The mode (or peak) x∗(t)
decreases steadily from 1/2 at t = 0 to 1/6 at t = 2/3, and the height of the mode becomes
unbounded as t → 2/3. The intuition is that all consumers decrease ordinary consumption
(recall that for c = 0 they care only about conspicuous consumption) but gradient dynamics
dictate that the modal consumer adjusts more rapidly than consumers with initially lower x
and he begins to overtake them at time t∗ = 2/3 and consumption level x = 1/6. Given our
assumption of identical underlying preferences and income, this consumer can’t actually pass
his rivals because his behavior is identical to theirs once he attains the same consumption
level. Instead, he clumps together with them, and the clump grows as it overtakes consumers
with x just below the mode and is overtaken by consumers with x just above the mode.

Thus, beginning at t = 2/3 we get a growing, moving mass of consumers with identical
consumption patterns, a homogeneous middle class. To calculate its position x∗(t) and mass
M(t) for t > 2/3, one uses techniques developed in fluid mechanics to deal with shock
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waves. The Rankine-Hugoniot conditions (see Smoller, 1994) impose conservation of mass
and exploit the weak-star topology to obtain a unique distribution function D(x, t) with a
jump discontinuity. It turns out that for t ∈ (2/3, 1] the position is x∗(t) = (1 − t)/2 and

the jump size is M(t) =
√

3
t2
− 2

t3
. Thus the middle class absorbs the entire population by

the time it hits the boundary x = 0 at time t = 1. For t > 1, of course, everyone continues
to neglect ordinary consumption.

Figure 2 shows the cumulative distribution function D for choices x, shown for time t = 0
and subsequent times. At t∗ = 2/3 the distribution has a vertical tangent at x∗ = 1/6. At
later times the distribution has a jump discontinuity.

Friedman and Yellin (2000) show that the dynamics are qualitatively similar in more complex
situations. A shock wave apparently will arise from any local maximum of the initial density
far enough above the point x̃ where the gradient is 0; and for the consumption parameter
c > 0, the shock velocity decreases as the position approaches x̃. It is reasonable to include
a little behavioral or perceptual noise in the form of a diffusion term in (2), as is assumed in
quantal response equilibrium models; see Anderson, Goeree and Holt (1998) for example. In
this case the long run equilibrium is slightly smoothed, approximately Gaussian with small
variance, and the shock waves are also smoothed. Instead of travelling jump discontinuities
in the distribution function, we get travelling steep segments of a continuous distribution,
locally approximately Gaussian.

3.6 Financial markets: bubbles and crashes

We propose to use the same mathematical tools to construct new models of financial markets.
Consider a single population of portfolio managers whose utility depends on performance.
Given performance ratings such as those published four times a year in the Wall Street Jour-
nal (and more frequently by Lipper Analytics and Morningstar), it seems clear that relative
performance, or rank, matters at least as much as absolute performance. Higher rank brings
bonuses and competing job offers, and also indirectly increases managers’ compensation by
attracting more customers.

The basic model assumes that each manager chooses a single ordered variable, x ∈ [0,∞).
An interpretation consistent with orthodox financial theory is that x represents the leverage
on the composite risky asset, the market portfolio M , with borrowing or lending of a riskless
security at a fixed known rate Ro. For a given realized yield RM on M , the manager realizes
a portfolio return R(x) = Ro +x(RM−Ro). The model can be enriched slightly by assuming
that the manager’s cost of funds is the risk free rate Ro plus a risk premium c(x), with
c(0) = 0, c′ > 0 and c′′ > 0. The second derivative is positive because the probability of a
loss (and its expected size if it occurs) are naturally concave in the exposure defined by x.

The realized yield RM on M is the expected yield R̄M > Ro plus the ”surprise” yield eM .
The surprise is persistent; one specification is that new surprises are drawn independently at
Poisson times from a known distribution with mean 0. (A more sophisticated specification is
that eM is an Ornstein-Uhlenbeck process, i.e., mean-reverting Brownian motion. A complete
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Figure 1: Two landscapes on the unit interval

Figure 2: A compressive shock wave
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model would derive eM from shifts in the underlying technology and preferences.) The
expected yield R̄M depends systematically on investors’ behavior. Preliminary computations,
using only orthodox assumptions in economics and finance, produce an expression of the form
R̄M = kx̄B

D + g, where k, B and g are obtained from structural parameters of the model and
x̄D is the current mean leverage among portfolio managers.

It now is straightforward to derive the portfolio manager’s material payoff function

φ(x, D) = z[axx̄B
D + bx + eMx− c(x)] + K, (5)

where z is the size of the portfolio, and a, b and K again are obtained from structural
parameters of the model. The gradient is φx(x, D) = z[ax̄B

D + b+ eM − c′(x)], and the spatial
rate of change in the gradient is φxx(x, D) = −zc′′(x) < 0.

Gradient dynamics are especially appealing for this application. Short-run adjustment of
a trader’s position or asset holding x occurs mainly via net selling or buying of the risky
asset M . The per-share trading cost increases with the net amount traded in a given short
interval of time, mainly because of ”price pressure” or limited liquidity. If the increase is
linear, then the adjustment cost (net trade times per share trading cost) is exactly quadratic.
Proposition 1 of Friedman and Yellin (1997) shows that quadratic adjustment costs are the
key condition to obtain precisely gradient dynamics rather than approximate gradient or
sign-preserving dynamics.

Even for small weight on rank-dependent utility, gradient dynamics will be quite interesting.
Since (5) already has a decreasing gradient, (4) can produce shock waves in the evolving
state D(x, t) starting from some initial conditions. For example, suppose that the initial dis-
tribution is concentrated at low risk (small x values) and that the current surprise realization
eM is positive so φx(x, D) > 0 for all x in the support of D. Then under gradient dynamics
all portfolio managers increase their exposure to risk. Of course, x̄D also is increasing in this
case, so the price of the risky asset M increases and its expected yield decreases. This is
a bubble, a buying panic, and we can get the same sort of travelling shock wave as in the
Veblen consumption model: a travelling (and growing) clump of portfolio managers increase
their exposure to risk in lockstep.

A new realization of eM can turn the gradient negative, resulting in a crash. Even starting
from a continuous distribution, we can get a travelling and growing jump discontinuity at
x∗(t) in the distribution D(x, t), as managers scramble to unload risky assets. The crash
occurs on low trading volume; x∗(t) and portfolio values decrease mainly due to a sharp
decline in the price of the risky asset M . Gradient dynamics for probability distributions
seem to have the general feature that it is easier to obtain a shock wave that moves downward
(in this application, a crash) than one that moves upward (here, a bubble). Indeed, the
Veblen consumption model apparently does not permit upward moving shock waves.

12



4 Conclusion

We are at a special moment for advancing the art of mathematical modeling in the social sci-
ences. Just as mathematical tools, computer simulation, and computer graphic visualization
techniques are enabling new methods for the social, behavioral, and economic sciences, our
own programs of research have matured and focused on a particularly promising method, the
evolutionary game with continuous action. We now propose to accelerate the development
of special software and exemplary applications, and to send them out into cyberspace.
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