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Abstract

In joint work since 2004 we have created a family of agent-based models
for financial markets in which bubbles and crashes occur in imitation of real
markets. The evolution of behavioral rules in these models has shed light on
some possible mechanisms used by human account managers or traders. Our
programming environment, NetLogo, has proved ideal for this work, and also
offers a feature, HubNet, capable of extending simulations to include human
as well as robot traders. Recently we have used this feature to test a bubbles
and crash model in a controlled laboratory environment. The experiment
uses agent-based modeling to create a virtual financial market where human
subjects act as stock market traders alongside automated robots. We use the
experimental data to first test whether humans adjust their exposure to risk
in response to a payoff gradient and to test second whether humans perceive
risk by responding to an exponential average of their losses. We find that
humans do not exactly follow a gradient but are very close. We also find that
humans strongly respond to losses putting more weight on the most current
losses. However, how they respond to losses depends on the frequency and
predictability of crashes.
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1 Introduction

Our goal in this contribution is to introduce the basic assumptions and features of
our market models, and to give some early results of one of our ”cyborg” experiments
– that is, experiments involving human as well as robotic agents. But we will begin
with a brief history of the project, written by Ralph.

In 1968, after moving from the math department of Princeton University to that of
the University of California at Santa Cruz, I met Dan, then a grad student. After
Dan’s Ph.D. and some early positions, he became professor of economics at UCLA.
During the 1980s I visited frequently at UCLA, and we used to meet for lunch at
the faculty club. While I had no actual involvement in mathematical economics,
I nevertheless kept up on the news through Dan. Then in 1985, Dan moved to
UC Santa Cruz, and we continued meeting for the occasional lunch at the faculty
club.

Meanwhile, chaos theory was heating up as a new style of applied math, and the
economics community was becoming curious. Richard Goodwin, as assistant pro-
fessor at Harvard, fellow of Peterhouse College (Cambridge) and professor in Siena,
had led a long-term project on non-equlibrium economics, nonlinear dynamics, and
so on. He became an early adopter and harbinger of chaos theory. His 1988 lectures
in Siena appeared as a book in 1990, spreading his enthusiasm.

All this led to my invitation to give the Jacob Marshak Lecture at UCLA in January,
1987. After my talk on ”Nonlinear Systems, Complex Dynamics, and the Social
Sciences there followed a lively Q&A, during which there were several questions from
an Indian gentleman revealing a deep knowledge and understanding of dynamical
systems theory. At the end, I went up to him to inquire, ”Who are you?” – and thus
met Vela Velupillai.

Shortly thereafter, I received an invitation to a Workshop on Mathematical Eco-
nomics at the Certosa di Pontignano, Siena (May, 1991). This was the occasion of
my meeting the wonderful Richard Goodwin, having a ride in his pet car, seeing
Vela again, and also meeting Leonello Punzo, both former students of Goodwin. In
addition, I met a group of mathematical economists reporting exciting research in
bifurcations of iterated mappings of the plane, especially Laura Gardini of Urbino,
with whom I did joint work in the 1990s.

After 2000, Dan began telling me of his work in evolutionary game theory, and an
opportunity arose early in 2004 to jointly apply for a grant from the National Science
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Foundation. The NSF program involved was aimed at new mathematical methods
for the social and behavioral sciences. After reading a special issue of Nonlinear
Dynamics, Psychology, and Life Sciences on agent-based modeling, we saw a way
to apply agent-based modeling to extend evolutionary game theory. In our grant
application we wrote:

Our proposed research will extend the class of models called evolu-
tionary games by allowing the set of strategies (actions) of each player
(trader, agent) to be a continuous space, rather than just a finite set.
This continues a line of study begun in joint work of Dan Friedman and
Joel Yellin in 1997. The central concept of this work is the adaptive
landscape.

This grant proposal was funded, and since mid 2004 we have used NetLogo – an
agent-based modeling software system – to create a sequence of financial market
models. Next, we will explain the basic concepts as they have evolved to date.
Later, we will describe the cyborg experiment and its results.

2 The basic model: math

Our project website, http://www.vismath.org/research/landscapedyn/, presents sev-
eral models. Here we describe the simplest one, Market Model 9.0. These concepts
are basic to all of our market models.

We envision a number of money market managers (typically 20 to 100 in our sim-
ulations) trading in a financial market with two kinds of assets, riskless (safe) and
risky. Each manager has a choice from a continuum of strategies characterized by a
nonnegative real number, u. This is her risk parameter, and defines the division of
her portfolio between the two kinds of assets. The minimum value, u = 0, indicates
no risk (all assets are riskless), the value, u = 1, indicates all risk (all assets are
risky), and u > 1 indicates leveraged investment (borrowing on the safe asset).

Further, each manager has a portfolio of total worth, z, which we normally assume
to be between zero and four, with z = 1 indicating a typical starting value. With
each step, each portfolio’s worth is adjusted according to its risk parameter. The
safe portion u earns at rate R0, which we have fixed at R0 = 0.03, while the risky
portion (1 − u) earns at rate R1, with typically R1 ≥ R0 ≥ 0. The manager’s gross
annual return is thus,

RG = (1− u)R0 + uR1 (1)
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Financial math leads us to pose,

R1 = Rs/ū
2 + 2 ˙̄u/ū (2)

where Rs = R0 + Rd and Rd = 0.03, or Rs = 0.6; ū is the mean value of u choices
for all managers; and ˙̄u is the time rate of change of ū. Full details may be found in
(Friedman and Abraham, 2006).

Also, we assume that the gross return is decreased by a risk cost,

c(u) = c2u
2/2

where c2 = 0.02. (In the research version of this basic model, Model 8.0, the constant
c2 may be varied by a slider.) Then the net return is,

R(u) = u(R1 −R0)− c2u2/2 (3)

Combining (1) and (2) we obtain the payoff function,

φ(u, F ) = u(Rs/ū
2 + 2 ˙̄u/ū−R0)− c2u2/2 (4)

where F (u) denotes the dependence of net payoff on the distribution of u choices of
all managers.

The simulation proceeds in steps of discrete time intervals of size ”stepsize”, which
the operator may choose as days, weeks, and so on. With each step, each manager’s
worth, z, is adjusted (depending on the stepsize) according to the net annual return
R(u) according to her current choice of risk, u. Additionally, her strategy choice,
u, is adjusted according to the assumption of landscape dynamics, a gradient rule.
That is, we assume that each manager is hill-climbing up the gradient of the payoff
function (3) which depends on the current strategy choices of all managers (and their
changes) through ū and ˙̄u in (3).

3 The basic model: NetLogo

We now explain the graphical user interface of our simplest NetLogo model, Market
9.0, shown in Figure 1. The ”population” slider (default setting, 30) determines the
number of managers for the simulation. The ”center” slider (default 20%) determines
the mean u for the initial distribution of managers. The ”setup” button creates the
chosen number of managers with chosen mean u, and with random values of (u, z)
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within a medium-sized rectangle in the upper half of the black graphics window. The
”frequency” drop down menu (default 52, or weekly steps) determines the number of
updates per year. The ”go” button begins the simulation, which continues until the
”go” button is pushed once more. The small triangles in the upper half of the graphics
window indicate the managers, each positioned according to its (u, z) coordinates,
so they are seen to move smoothly about as the simulation progresses.

The other features of the interface shown in Figure 1 are three plots and three
monitors, that collectively show the position of managers, the landscape function,
the market price as a ticker-tape and as current value, the total elapsed time in years,
and the current value of net risky yield, R1.

It has been proven (Friedman and Abraham, 2006) that this model always converges
to a heap of managers all in one spot, and indeed, that is we what we observe as
the simulation progresses. To obtain bubbles and crashes we need a more sophis-
ticated model, such as Market Model 9.1. It implements two innovations: surprise
(stochastic variations in payoff) and the c2-dynamic (varying the c2 coefficient in the
gradient rule in response to losses, as explained below).

All of of our models are posted on our website with documentation. The NetLogo
models posted there function as applets, that is, you may run the model within
your web browser. In addition, the NetLogo models may be downloaded and run in
the NetLogo programming environment, which may be freely downloaded from the
NetLogo website, http://ccl.northwestern.edu/netlogo. We encourage you to try out
the applets.

4 The advanced models

In the course of our project, we made a succession of extensions to the basic model,
in search of dynamical features underlying the bubble and crash behavior of real
financial markets. Our more sophisticated models have provided many insights into
market forces contributing to bubbles and crashes, as reported in our articles pub-
lished on our website. Three successive extensions, called Model 8.1, 8.2, and 8.3,
extend the research version of the basic model, Model 8.0. In parallel, we prepared
simplified models of two of these, Models 9.0 and 9.1.

The first of these extensions was successful in exhibiting bubble and crash behavior,
and most of our research (reported in the papers mentioned in our bibliography
below) has been done with this extension, Model 8.1. The chief dynamical feature of
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this extension, the c2-dynamic, has the coefficient c2 in the the risk cost (see equation
2 above) controlled by an algorithm, rather than by a slider. Unlike the basic model,
here we have endogenous perturbations affecting each manager’s payoff separately,
that we call surprise. Our model determines surprise by an Ornstein-Uhlenbeck
process. Due to the occasional negative surprise, the managers accrue losses, from
which we calculate (for each manager independently) a weighted sum, L̂, with higher
weights for recent losses, and declining weights for older losses. Our algorithm for
the c2-dynamic makes use of all the individual L̂ values, combined in a global, z-
weighted mean, Lm. Recall that z is a variable (for each manager) measuring the
current worth of that manager’s portfolio. The rule to update c2 is c2 = βLm, where
β as a constant.

The user interface for Model 9.1 is shown in Figure 2. Note there are several ad-
ditional sliders, one of which is ”beta”, which sets the constant β. The others are
described in the User Manual for Model 8.1.

5 The cyborg experiment using Hubnet

The arrival in the 1980s of agent-based modeling in general, and NetLogo in par-
ticular, has stimulated a new wave of simulation research in economics, and more
generally in the social and behavioral sciences. And it is in this context that we
have situated the work performed under our recent NSF grant. However, during our
work with NetLogo we discovered that it has various unique features that extend
beyond the spectrum of other agent-based modeling systems. One of these unique
extras is the HubNet system. This provides NetLogo client interfaces, so that a local
net of computers may share control of the graphical user interface of a simulation as
it runs. Originally developed for classroom use, we have found it useful for experi-
ments involving human subjects interacting with a market of robot managers, and in
other experiments as well. We feel that this work advances the programs initiated by
Richard Goodwin and his students into new levels, and that many future agent-based
simulations and experiments will follow.

Despite their intrinsic interest, financial bubbles and crashes as yet have no widely
accepted theoretical explanation. In response, we developed an out-of-equilibrium
agent-based model focusing on portfolio managers who adjust their exposure to risk
in response to a payoff gradient, as described above. Bubbles and crashes occur for
a wide range of parameter configurations in our advanced models incorporating an
endogenous market risk premium based on investors’ historical losses and exponential
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averaging. Even though the simulations confirm bubbles and crashes, simulation
models are more valuable when they work in tandem with empirical studies and/or
laboratory experiments with human subjects. Therefore, we devised an experiment
where human subjects interact with automated robots to test the assumptions driving
our NetLogo models.

6 Experimental design

We conducted an experiment at the University of California at Santa Cruz Learn-
ing and Experimental Economic Projects (LEEPS) lab using the Hubnet feature of
NetLogo. In a participatory simulation, a group of human subjects can take part
in enacting the behavior of a system as each human controls a part of the system
by using an individual interface, the HubNet client. The LEEPS laboratory has 14
computers each linked to Hubnet via a server where subjects interact in a virtual
market as seen in Figure 3.

A typical experiment lasted 90 minutes and involved 5 inexperienced human subjects
recruited by email from a campus-wide pool of undergraduate volunteers. Humans
silently read the instructions and then listened to an oral summary by the conductor.
After a couple of practice rounds, they played about 12 periods. Humans subjects
are paid based on the average of their wealth achieved at the end of each trading
period which is redeemed at a couple of cents of real money, typically between $15
and $25.

During the trading period each human acts as a trader in a stock market alongside
other humans and automated robots. Their objective is to maximize their wealth by
buying and selling shares of a single stock at price P,

P = V ūα, (5)

where V is the fundamental value, ū is the mean distribution of allocation choices
among robots and humans, and α is a positive parameter that measures sensitivity
to buying pressure. See equations (1) and (2) above. Humans do not know the price
equation (1) nor the values of V , ū, or α. However, as shown in Figure 3, they can
see the current price and price plot. We do tell them that price is determined by
the growth rate, interest rate, and buying and selling pressure. More specifically, we
tell them the growth rate is zero, the interest rate is three percent, and that no one
individual can move the stock price, but collectively, net buying pressure increases
the price and net selling pressure decreases the price.
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Each trading period consists of 20 ”years,” where the computer screen updates the
trades and wealth on a weekly basis as shown in Figure 3. Before each trading
period begins humans are endowed with five hundred dollars and seventy shares of
stock. Their wealth at any point in time is equal to their cash plus their number
of shares owned times the stock price. Human cash and wealth change based on
several factors. First, humans earn interest on cash savings as well as pay interest if
they borrow. Margin buying is allowed up to a limit that depends on their current
wealth. Second, a buy reduces their cash position by the amount purchased times
the stock price plus a transaction cost. A sell increases their cash position by the
amount sold times the current stock price minus a transaction cost. Third, human
shares grow based on the growth rate.1 In addition, humans can go bankrupt. If a
human goes bankrupt, they are banned from trading and incur a loss of $500 for the
period. However, they are allowed to resume trading in the next period.

Humans view events on the monitor screen and respond by clicking one of seven
buttons called adjustment-rates. Of the seven adjustment-rates, 3 accumulates shares
at a very fast rate, 2 accumulates at a medium rate, 1 accumulates shares at a slow
rate, 0 refrains from trading, -1 sells at a slow rate, -2 sells at a medium rate, and -3
sells at a fast rate. A message box reminds them which button is active. In addition,
there exists monitors to view their holdings of cash, shares, wealth, transaction cost,
and rate of return.

6.1 Treatments

We use two types of treatments. The first type varies the number of traders who
participate in a market. The second type involves information about the other par-
ticipants:

• Number of humans and robots. As the population size declines price volatility
and the frequency of crashes increase. The three different population treat-
ments include (1 human and 29 robots), (5 humans and 25 robots), and (5
humans and 5 robots). Each experiment runs four blocks. We run three blocks
of each treatment where the fourth block repeats the treatment run in the first
block. For every experiment we rotate block order so the final data set contains
the same number of observations per treatment.2 In addition, all blocks are

1Shares do not grow in the base case where the growth rate is zero.
2For example, the first experiment ran (1 human and 29 robots), (5 human, 5 robots), (5 human

and 25 robots), and (1 human, 29 robots). The second experiment ran (5 human, 5 robots), (5
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known to everyone.

• Information. Depending on the experiment, humans are able to see (or not
see) a graphics window, density of traders plot, and a landscape plot as shown
in Figure 4 (or not, as in Figure 3). The graphics window displays automated
robots as small triangles and human traders as round dots where humans can
identify themselves by a specified color. The graphics window allows humans
to see the ratio of stock position to wealth of every human and robot. The
density of managers chart is a histogram of the horizontal position of all traders,
automated and human. The landscape chart shows the return rate (profit
before transactions costs) each week for traders at every horizontal position
(stock position relative to wealth).

The baseline configuration values in the simulated model are R0 = dR = 0.03,
g = 0.0, σ = 0.2, τ = 0.7, η = 0.7, β = 2, α = 2, λ = 1, d = 1, rate = 1.3,
and c = 1. We use the same parameter values for the sessions except we increase
σ to 0.3 to induce sufficient variability so that humans cannot predict future price
movements. Humans are not specifically told parameter values. The meanings of
these parameters are described on our websites.

6.2 Integrating robots and humans

The humans’ shares and wealth are translated into an appropriate u and z. Humans’
risk allocation, uj, equals one minus the ratio of their cash to wealth and the portfolio
size, zj, changes based on their gross return, inflow rate, and outflow rate3,

uj = 1− (
cashj
wealthj

), (6)

żj = [Ro + (R1 −Ro − tj − δL̂j + ρzoe
λR̂j ]zj. (7)

where j refer to humans and t refers to the transaction cost. The human’s initial zj is
equal to 1 and subsequently changes based on equation (3). The robots receive their
initial risk allocation, ui, and portfolio size, zi, randomly via a uniform distribution in

human and 25 robots), (1 human and 29 robots), and (5 human, 5 robots). And the third experiment
ran (5 human and 25 robots), (1 human and 29 robots), (5 human, 5 robots), and (5 human and
25 robots).

3See Bubbles & Crashes (2008) for an explanation of the inflow and outflow rate.
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the (u, z) rectangle [0.2, 1.4]×[0.4, 1.6], set via the sliders. The u and z possible range
is between 0 and 4. The distinction between how portfolio size changes for a robot and
a human is that robots receive an idiosyncratic shock and do not pay transaction
costs where as humans pay transaction costs and do not receive an idiosyncratic
shock. The transaction cost is determined as,

tj = c(adjustment−ratej)2, c = constant. (8)

As in real markets humans face transaction costs where larger orders incur larger
trading costs. The constant, c, is set to 1 such that trading at a fast rate incurs a
transaction cost of 25%, a medium rate incurs a cost of 6.25%, and a slow rate incurs
a cost of 1.6%. Humans are able to see a monitor that tracks their transaction costs.
For every trade transaction costs reduce humans’ cash savings. We use transaction
costs for humans in order to analyze whether humans are sensitive to market frictions
or whether they thrash between buying and selling at fast rates. Another integration
issue involves buying and selling. The buttons -3, -2, -1, 0, 1, 2, 3 shown on the
interface were chosen for ease of viewing. The actual rates are 0.125 for a slow rate,
0.25 for a medium rate, and 0.5 for a fast rate. These rates were chosen based on the
standard deviation of the robot’s chosen gradient, 0.125, in an all robot simulation
using a baseline configuration. We then scale the adjustment rates up in order to
accurately affect human cash and share holdings.

7 Results

To investigate these assumptions from Friedman & Abraham (2008) , and to check
their robustness, we analyze data from all nine sessions. We define a crash as as a
decline in price P of at least 50% from its highest point within the last half year.

7.1 Do Humans React to an Exponential Average of their
Losses?

In order to investigate whether humans react to an exponential average of their losses
we run the following regression,

adjustment−ratej,t =

β0 + β1 ∗ cashj,t + β2 ∗ sharesj,t + β3 ∗ wealthj,t + β4 ∗ returnt +
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β5 ∗ h5−r25 + β6 ∗ h1−r29 + β7 ∗ L̂j,t + beta8 ∗ L̂j,t−h5−r25 +

β9 ∗ L̂j,t−.15cm−h1−r29 + β10 ∗ crash−period+ ε

where the dependent and explanatory variables have the following meanings,

• The dependent variable, adjustment−ratej,t, is the trading rate of human j at
time t.

• Cashj,t represents the level of cash holdings of human j at time t.

• Sharesj,t represent the number of shares of human j at time t.

• Wealthj,t represents the level of wealth of human j at time t.

• Returnt is the log first difference in price.

• h5-r25 is an indicator variable that assigns a 1 to the (5 human, 25 robot)
treatment and 0 otherwise.

• h1-r29 is an indicator variable that assigns a 1 to the (1 human, 29 robot)
treatment and 0 otherwise.

• L̂j,t is the humans’ exponential average of losses of human j at time t.

• Crash-period is an indicator variable that assigns a 1 to the time period of a
crash and 0 otherwise.

• The intercept represents the base treatment, (5 human, 5 robot).

• The L̂j,t is determined by setting η equal to 0.7. The interaction variables, L̂j,t-

h5-r25 and L̂j,t-h1-r29 tells us how humans respond to an exponential average

of losses relative to the L̂j,t, (5 human, 5 robot) baseline treatment.

The results in Table 1 indicate humans do respond to losses. However, how they
respond to losses depends on the treatment. Humans responded to losses by selling
less in the (5 human, 5 robot) treatment and selling more in the (5 human, 25 robot)
and (1 human, 29 robot) treatments. The theory says that as losses accumulate
humans should sell. Results from all treatments confirm the theory. One reason why
humans respond less to losses in the the (5 human, 5 robot) treatment is possibly due
to the number and predictability of crashes. After the first period in the (5 human, 5
robot) block, humans realized that a crash was inevitable and therefore waited for a
crash in order to accumulate shares at low prices. Lastly, the crash-period estimate
reveals humans bought slighlty during crashes.
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Table 1: Human OLS Regression: All Sessions

Parameter Estimate Standard Error Pr > |t|
Intercept -0.008 0.0009 <0.0001∗∗
Cashj,t 0.00008 0.0000012 <0.0001∗∗
Sharesj,t 0.0015 0.000022 <0.0001∗∗
Wealthj,t -0.0001 0.00001 <0.0001∗∗
Returnt 0.625 0.012 <0.0001∗∗
h5-r25 0.033 0.0007 <0.0001∗∗
h1-r29 0.054 0.0007 <0.0001∗∗

L̂j,t -0.047 0.004 <0.0001∗∗

L̂j,t-h5-r25 -0.633 0.016 <0.0001∗

L̂j,t-h1-r29 -1.137 0.021 <0.0001∗
Crash-period 0.013 0.001 <0.0001∗

∗ significant at 5%; ∗∗ significant at 1%

7.1.1 Do Humans Follow a Gradient?

Figure 5 shows how frequently humans choose one of the seven adjustment rates.
The distribution of choices is relatively symmetric with humans choosing to hold
45% of the time. This provides evidence that humans are sensitive and aware to
market frictions. Humans do not jump back and forth between buying at a fast
rate and then selling at a fast rate which confirms gradient dynamic behavior versus
adaptive dynamic behavior.

In order to test whether humans follow a gradient similar to robots we assume humans
see the same gradient as do robots, and regress their choices, adjustment−ratej, on
the gradient evaluated at the humans’ current uj, called gradienthj . Theoretically,
if humans are exactly following a gradient then the gradienthj estimate should equal
1.00. However, comparing the gradienthj estimate to 1.00 is not appropriate in our
study. By design the gradienthj estimate will be less than 1.00 because humans can
only choose seven different adjustment-rates and not a continuous set of adjustment
rates. In order to find a more appropriate comparison estimate, we run the same
regression using robot data where the explanatory variable is the robots’ actual
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chosen gradient, gradientri , and the dependent variable is the robots’ actual gradient
translated into one of the seven adjustment-rates humans face. We translate the
robot’s gradient by using midpoints to construct seven ranges that correspond to the
seven adjustment-rates. We then assign an adjustment-rate to each of the robots’
gradient depending on which of the seven ranges their gradient falls into.4 Results
from Table 2 report the appropriate comparison estimate ,gradienthj , is 0.87 and
not 1.00. Therefore, the closer the estimated coefficient using human data is to the
coefficient using robot data, 0.87, the more evidence that humans follow a gradient.

Table 2: Human’s Adjustment Rate vs. Human’s Gradient

Parameter Estimate Standard Error Pr > |t| Rsq

gradienthj 0.32 0.0017 <0.0001∗∗ .11

gradientri 0.87 0.0004 <0.0001∗∗ .91

∗ significant at 5%; ∗∗ significant at 1%

According to Table 2 humans are not exactly following a gradient but are very
close.

We also ran an additional regression to the one in equation (5) using robot data in
order to compare estimates between the human and robot regressions. The regression
results indicate the signs and level of significance for all estimates are the same.
Robots and humans only differ in the magnitude of the estimates. For example,
humans actually respond stronger to losses than do robots and robots sell ten times
more aggressively that humans during crashes.

8 Conclusion

We conduct one of the first studies to integrate agent-based modeling and experimen-
tal economics. The experiment consists of a virtual financial market that includes
automated robots who follow a gradient (but are distinct in that each receives an
idiosyncratic shock) and humans subjects. We use the experimental data to test two
important questions: do humans react to market frictions by following a gradient

4For example, if a robot chose a gradient of 0.1 then that choice would be defined as a slow buy,
0.125, since it is between 0.0625 and 0.1875.
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and do humans perceive risk by reacting to an exponential average of their losses?
From our analysis we can conclude several results. First, humans do respond to
losses by selling. However, when crashes are more frequent and predictable, humans
respond less to losses. Overall, since bubbles and crashes are not predictable the
analysis of experimental data provides evidence that an exponential average of losses
can be used as a way to measure the perception of risk. Second, humans do not
exactly follow a gradient as compared to robots but are very close to following one.
In addition, humans follow a gradient more closely when allowed to view all market
participants in the graphics window. Lastly, sessions where humans are able to view
other market participants in the graphics window tend to herd around each other
and hardly ever disperse very far from the group. It is interesting how humans do
not follow the robots, who drive the majority of the price dynamics in two of three
population treatments.

There is still more work to be done. We would like to use the experimental data
to test the assumptions of other agent-based financial models in order to determine
which agent-based model fits the experimental data better. In addition, we would
like to ask whether humans are a stabilizing or destabilizing force. Moreover, we
would like to run more sessions with different constants on the transaction costs to
see how human behavior changes as we reduce transaction costs.
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Figure 1: Interface of NetLogo Market Model 9.0.
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Figure 2: Interface of NetLogo Market Model 9.1.
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Figure 3: Human Interface

Figure 4: Human Interface With Graphics Window, Landscape, and Density Chart
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Figure 5: Frequency of Adjustment-Rates
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