
Program Guide to Market 8.2

Ralph Abraham

July 13, 2007

This is the PDF of market082.04guide.tex. It is a program guide for market082.04.nlogo,
a NetLogo model for a market of portfolio managers. It is a second extension of our basic
market model 8.0. We are going to make one extension to 8.1, as described the article
Bubbles and Crashes (B+C) of 10 January 2007, in Section 5.1 on fickle investors. [See #1
at http://leeps.ucsc.edu/papers.] The changes from 8.1 to 8.2 are:

• Each manager has a new local variable, Rhat, perceived net returns.

• There is a new global variable, z0 = z-pool which receives and stores holdings with-
drawn from managers by fickle investors.

• There is a new slider, δ = d, controlling the portion of holdings to withdraw.

• There is a new slider, λ = lambda, the exponential rate of recruiting from z-pool by
a successful manager due to her R̂ = Rhat.

• There is a new slider, ρ = rate, controlling the overall recruiting rate. (see equation
17 of B+C).

• There is new global variable,total-elr, for total of terms exp ( lambda * Rhat ,
summed over all managers. This is not described in B+C, so see the code below.

The procedure ”update-managers-z” requires the procedures:

• update-managers-loss (as in 8.1, but now involving Rhat),

• compute-mean-Lhat (as in 8.1, but now involving Rhat), and

• compute-total-elr (new to 8.2).

Here we have an expression that does not appear in B+C so we spell it out. When N agents
have local variables wi, Ai, we may form the logit denominator for the Ai with weights, wi,

Ā =
∑

expwiAi,

1



summed from 1 to N , and then the local logit expression,

exp(wiAi)/Ā.

In this model we apply the logit transformation to the managers local variables, Rhat,
with weights z * lambda, where lambda is set by a slider. Thus, we have a global variable,
total-elr, which in our NetLogo code is computed by the procedure, compute-total-elr
in each step of the simulation. This procedure also updates each manager’s’ local variable,
z-pool-draw, which plays a role in the procedure, update-managers-z.

Here are the four procedures from 8.2 that differ from 8.1.

to update-managers-loss ;;; update local Lhat (NOT z-weighted) and local Rhat
ask managers [

let annual-gross ( u * ( R1 - R0 ) + R0 ) ;;; this is gross return
let annual-gross-jiggled annual-gross + u * jiggle
let pay annual-gross-jiggled
;;; this is the annual yield NOT reduced to interval of stepsize
set L 0
if ( pay < 0 ) [ set L ( - pay ) ]
let oldLhat Lhat
let temp1 eta * stepsize
let temp3 exp ( (-1) * temp1 ) ;;; new to 07a
let temp4 ( 1 - temp3 )
set Lhat ( temp4 * L + temp3 * oldLhat ) ;;; new to 07b
let oldRhat Rhat ;;; update Rhat ;;; REV 082
let temp2 z * pay
set Rhat ( temp4 * pay + temp3 * oldRhat )
;;; same as Lhat ;;; REV 082

]
end

to compute-mean-Lhat
;;; average all managers, IS z-weighted, update c2 as well ;;; REV 081
let sum-Lhat 0 ;;; temp for running weighted sum
let sum-Rhat 0 ;;; temp ;;; REV 082
let sum-z 0 ;;; temp for running weighted sum
ask managers [ ;;; add Lhat’s all manaers

set sum-Lhat ( sum-Lhat + Lhat * z )
set sum-Rhat ( sum-Rhat + Rhat * z ) ;;; REV 082
set sum-z ( sum-z + z )

]
set mean-Lhat sum-Lhat / sum-z ;;; error repaired in 07f

2



set mean-Rhat sum-Rhat / sum-z ;;; REV 082.0
set c2 beta * mean-Lhat
if ( c2 < 0.01 ) [ set c2 0.01 ] ;;; clip small c2

end

to compute-total-elr
;;; denominator in total-elr formula, z-weighted logit total Rhat
let sum-elr 0 ;;; temp for running weighted sum
ask managers [ ;;; add elr’s of all managers

let temp z * exp ( lambda * Rhat ) ;;; z-weighted lambda-logit total Rhat
set sum-elr ( sum-elr + temp )
set total-elr sum-elr ;;; global variable, denominator of local z-pool-draw

]
ask managers [ ;;; when total-elr is done, then reset all local draws

let temp z * exp ( lambda * Rhat ) ;;; z-weighted lambda-logit total Rhat
set z-pool-draw temp / total-elr ;;; set local draw

]
end

to update-managers-z ;;; update turtle variable z and move its ycor, includes clipping
ask managers [

let annual-gross ( u * ( R1 - R0 ) + R0 ) ;;; this is gross return
let annual-gross-jiggled annual-gross + u * jiggle
let pay cut annual-gross-jiggled
;;; this is the annual yield reduced to interval of stepsize
let z-now z ;;; hold for later
let z-temp1 z-now * ( 1 + pay ) ;;; add payoff for this step
let fickle d * stepsize * Lhat ;;; portion to defect
let z-temp2 ( 1 - fickle ) * z-temp1 ;;; let defectors go
let recruits rate * stepsize * z-pool * z-now * exp ( lambda * Rhat)
if recruits < 0 [ set recruits 0 ] ;;; clip
set z ( z-temp2 + lambda * recruits ) ;;; include recruits
if (z < zlim) [ set z zlim ] ;;; clipping
if (z > zmax) [ set z zmax ]
;;; vertical move
let ytemp ( z - zmin ) * ( width-y - 1 ) / ( 2 * width-z ) ;;; its a float
set ycor ytemp ;;; convert z to ycor, keep as float
;;; update z-pool
set z-pool ( z-pool + fickle * z-now - lambda * recruits )
if z-pool < 0 [ set z-pool 0 ] ;;; clip

]

3



end

The processes are outlined graphically in the following figures.

4



Figure 1: The Big Picture: Outline of the Step Procedure. Details new to the first extension
are bold face.

5



Figure 2: The ”do-math” procedure: the inner loop.

6



Figure 3: The ”do-math” procedure: the outer loop.

7



Figure 4: Outline of the horizontal substep procedure. Note: the c2 slider has been replaced
by do-inner-math.

8



Figure 5: Outline of the vertical step procedure.

9


